ON ADDITIONAL MOTION INVARIANTS OF CLASSICAL HAMILTONIAN WAVE SYSTEMS

被引:52
作者
ZAKHAROV, VE [1 ]
SCHULMAN, EI [1 ]
机构
[1] ACAD SCI USSR, INST WATER PROBLEMS, MOSCOW V-71, USSR
关键词
D O I
10.1016/0167-2789(88)90033-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:283 / 320
页数:38
相关论文
共 51 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   SOLITON SOLUTIONS OF DAVEY-STEWARTSON EQUATION FOR LONG WAVES [J].
ANKER, D ;
FREEMAN, NC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 360 (1703) :529-540
[3]  
ARNOLD VI, 1974, MATH METHODS CLASSIC
[4]   TO THE INTEGRABILITY OF THE EQUATIONS DESCRIBING THE LANGMUIR-WAVE ION-ACOUSTIC-WAVE INTERACTION [J].
BENILOV, ES ;
BURTSEV, SP .
PHYSICS LETTERS A, 1983, 98 (5-6) :256-258
[5]  
Berkhoer A. L., 1970, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, V58, P903
[6]   3-DIMENSIONAL PACKETS OF SURFACE-WAVES [J].
DAVEY, A ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) :101-110
[7]   PROLONGATION STRUCTURES OF NONLINEAR EVOLUTION EQUATIONS .2. [J].
ESTABROOK, FB ;
WAHLQUIST, HD .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (07) :1293-1297
[8]   CANONICALLY CONJUGATE VARIABLES FOR KORTEWEG-DEVRIES EQUATION AND TODA LATTICE WITH PERIODIC BOUNDARY-CONDITIONS [J].
FLASCHKA, H ;
MCLAUGHLIN, DW .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :438-456
[9]   KORTEWEG-DEVRIES EQUATION AND GENERALIZATIONS .6. METHODS FOR EXACT SOLUTION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :97-133
[10]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&