COUNTING IRREDUCIBLE FACTORS OF POLYNOMIALS OVER A FINITE-FIELD

被引:16
作者
KNOPFMACHER, A [1 ]
KNOPFMACHER, J [1 ]
机构
[1] UNIV WITWATERSRAND,DEPT MATH,JOHANNESBURG 2001,SOUTH AFRICA
关键词
D O I
10.1016/0012-365X(93)90227-K
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F(q)[X] denote a polynomial ring in an indeterminate X over a finite field F(q). Exact formulae are derived for (i) the number of polynomials of degree n in F(q)[X] with a specified number of irreducible factors of a fixed degree r in F(q)[X]and (ii) the average number of such irreducible factors and corresponding variance for a polynomial of degree n in F(q)[X]. The main emphasis is on the case when multiplicity of factors is counted. These results are then applied to derive the mean and variance for the total number of irreducible factors of polynomials of degree n in F(q)[X].
引用
收藏
页码:103 / 118
页数:16
相关论文
共 10 条
[1]   FURTHER ARITHMETICAL FUNCTIONS IN FINITE FIELDS [J].
COHEN, SD .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1969, 16 :349-&
[2]   2ND-ORDER TERMS FOR VARIANCES AND COVARIANCES OF NUMBER OF PRIME FACTORS - INCLUDING SQUARE FREE CASE [J].
DIACONIS, P ;
MOSTELLER, F ;
ONISHI, H .
JOURNAL OF NUMBER THEORY, 1977, 9 (02) :187-202
[3]   GAUSSIAN LIMITING DISTRIBUTIONS FOR THE NUMBER OF COMPONENTS IN COMBINATORIAL STRUCTURES [J].
FLAJOLET, P ;
SORIA, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1990, 53 (02) :165-182
[4]  
Knopfmacher A., 1990, LINEAR MULTILINEAR A, V26, P287
[5]  
Knopfmacher J., 1975, ABSTRACT ANAL NUMBER, V1st
[6]  
KNOPFMACHER J, 1979, ANAL ARITHMETIC ALGE
[7]  
Lidl Rudolf, 1983, FINITE FIELDS
[8]   POLYNOMIALS WITH IRREDUCIBLE FACTORS OF SPECIFIED DEGREE [J].
WILLIAMS, KS .
CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (02) :221-&
[9]  
Wright E., 1979, INTRO THEORY NUMBERS
[10]  
[No title captured]