A criterion for the unique solvability of the spectral Dirichlet problem for a class of multidimensional hyperbolic-parabolic equations

被引:2
作者
Aldashev, S. A. [1 ]
机构
[1] Kazakh Natl Pedag Univ, Dept Fundamental & Appl Math, 86 Tole Bi St, Alma Ata 480100, Kazakhstan
来源
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI | 2018年 / 22卷 / 02期
关键词
multidimensional hyperbolic-parabolic equation; Dirichlet spectral problem; multidimensional cylindrical domain;
D O I
10.14498/vsgtu1585
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the cylindrical domain of Euclidean space for one class of multidimensional hyperbolic parabolic equations the spectral Dirichlet problem with homogeneous boundary conditions is considered. The solution is sought in the form of an expansion in multidimensional spherical functions. The existence and uniqueness theorems of the solution are proved. Conditions for the unique solvability of the problem are obtained, which essentially depend on the height of the cylinder.
引用
收藏
页码:225 / 235
页数:11
相关论文
共 12 条
[1]   A CRITERION FOR THE UNIQUE SOLVABILITY OF THE DIRICHLET SPECTRAL PROBLEM IN A CYLINDRICAL DOMAIN FOR MULTIDIMENSIONAL HYPERBOLIC EQUATIONS WITH WAVE OPERATOR [J].
Aldashev, S. A. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2014, (03) :21-30
[2]  
Aldashev S. A., 2012, EQUATIONS MIXED TYPE, P24
[3]  
Aldashev S. A, 2014, VESTNIK KAZNPU FMN, P128
[4]  
Aldashev S. A., 2013, UKRAINSKII MATEMATIC, V10, P147
[5]  
Erd?lyi A., 1981, HIGHER TRANSCENDENTA, VII
[6]  
Friedman Avner, 1964, PARTIAL DIFFERENTIAL
[7]  
Kamke E., 1965, SPRAVOCHNIK OBYKNOVE
[8]  
Kolmogorov A.N., 1976, ELEMENTY TEORII FUNK
[9]  
Mikhlin S. G., 1965, INT SERIES MONOGRAPH, V83, DOI [10.1016/C2013-0-01835-X, DOI 10.1016/C2013-0-01835-X]
[10]  
Nakhushev A.M., 2006, ZADACHI SO SMESHCHEN