SOIL-TEMPERATURE AND WATER-CONTENT BENEATH A SURFACE FIRE

被引:118
作者
CAMPBELL, GS
JUNGBAUER, JD
BRISTOW, KL
HUNGERFORD, RD
机构
[1] CSIRO, DIV SOILS, TOWNSVILLE, QLD 4814, AUSTRALIA
[2] USFS INTERMT FIRE SCI LAB, MISSOULA, MT 59807 USA
关键词
D O I
10.1097/00010694-199506000-00001
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
We report here the results of laboratory and computer simulations designed to supply information on soil temperatures under forest and range fires. Measurements of temperature and water content in a soil column that was heated strongly at the surface showed a consistent pattern of warming and drying. In initially wet soil, temperature rose to around 95-degrees-C and remained there until the water content of the soil at that depth dropped below about 0.02 m3 m-3. When the soil was initially dry, the temperature increased more rapidly, but even the moisture present in air-dry soil was sufficient to slow the rate of temperature rise when temperatures reached 90-degrees-C. A linked-transport model, which simultaneously computes changes in temperature and water content, simulated the main features of heat and water flow in a soil column heated to high temperature. There were no consistent deviations of measured from modeled temperatures, but the water content simulations consistently showed a greater buildup of moisture ahead of the heating front than did the measurements, and less drying of the soil in the heated layers when the initial soil water content was low. Soils from sand to clay, and with differing mineralogies, water contents, and bulk densities were used to compare measurements and simulations. The model performed well in all cases. Since the temperature simulations are reasonable, the model appears suitable for predicting fire effects in the field.
引用
收藏
页码:363 / 374
页数:12
相关论文
共 14 条
[1]   COUPLED SOIL-MOISTURE, HEAT AND WATER-VAPOR TRANSFERS UNDER SIMULATED FIRE CONDITIONS [J].
ASTON, AR ;
GILL, AM .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 1976, 14 (01) :55-66
[2]  
BORLAND, 1989, TURBO PASCAL 5 5
[3]  
Campbell G.S., 1992, INDIRECT METHODS EST
[4]   A ONE-PARAMETER EQUATION FOR WATER SORPTION ISOTHERMS OF SOILS [J].
CAMPBELL, GS ;
JUNGBAUER, JD ;
SHIOZAWA, S ;
HUNGERFORD, RD .
SOIL SCIENCE, 1993, 156 (05) :302-305
[5]   PREDICTING THE EFFECT OF TEMPERATURE ON SOIL THERMAL-CONDUCTIVITY [J].
CAMPBELL, GS ;
JUNGBAUER, JD ;
BIDLAKE, WR ;
HUNGERFORD, RD .
SOIL SCIENCE, 1994, 158 (05) :307-313
[6]  
CAMPBELL GS, 1985, SOIL PHYSICS BASIC T
[7]  
De VRIES D. A., 1958, TRANS AMER GEOPHYS UNION, V39, P909
[8]  
de Vries D. A., 1963, PHYS PLANT ENV, P210, DOI DOI 10.12691/AEES-2-2-1.
[9]   A NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFECIENTS [J].
FULLER, EN ;
SCHETTLE, PD ;
GIDDINGS, JC .
INDUSTRIAL AND ENGINEERING CHEMISTRY, 1966, 58 (05) :19-+
[10]  
GARDNER WH, 1986, AGRONOMY MONOGRAPH, V9, P49