CONVERGENCE TIME ON THE RS MODEL FOR NEURAL NETWORKS

被引:7
|
作者
Penna, T. J. P. [1 ]
de Oliveira, P. M. C. [1 ]
Arenzon, J. J. [2 ]
de Almeida, R. M. C. [2 ]
Iglesias, J. R. [2 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil
[2] Univ Fed Rio Grande Sul, Inst Fis, BR-91500 Porto Alegre, RS, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 1991年 / 2卷 / 03期
关键词
Neural Networks; Multispin Coding; Multineuron Models;
D O I
10.1142/S0129183191000950
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Convergence times and the corresponding dispersions have been studied numerically as parameters to measure the efficiency of neural network models. These quantities are also supposed to be related to the number of spurious states for each configuration of stored patterns. In this work we measure these quantities for a recent multineuron interaction model presenting an enhanced performance compared to other traditional schemes.
引用
收藏
页码:711 / 717
页数:7
相关论文
共 50 条
  • [31] Existence and global convergence of periodic solution of delayed neural networks
    Yuan, Zhaohui
    Yuan, Lifen
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (1-2) : 101 - 113
  • [32] Convergence of Neural Networks with a Class of Real Memristors with Rectifying Characteristics
    Di Marco, Mauro
    Forti, Mauro
    Moretti, Riccardo
    Pancioni, Luca
    Tesi, Alberto
    MATHEMATICS, 2022, 10 (21)
  • [33] Model selection in neural networks
    Anders, U
    Korn, O
    NEURAL NETWORKS, 1999, 12 (02) : 309 - 323
  • [34] Convergence of a Class of Delayed Neural Networks with Real Memristor Devices
    Di Marco, Mauro
    Forti, Mauro
    Moretti, Riccardo
    Pancioni, Luca
    Innocenti, Giacomo
    Tesi, Alberto
    MATHEMATICS, 2022, 10 (14)
  • [35] DISCRETE-TIME NEURAL NETWORKS
    WAN, EA
    APPLIED INTELLIGENCE, 1993, 3 (01) : 91 - 105
  • [36] A new model selection strategy in time series forecasting with artificial neural networks: IHTS
    Aras, Serkan
    Kocakoc, Ipek Deveci
    NEUROCOMPUTING, 2016, 174 : 974 - 987
  • [37] Continuous-time system identification with neural networks: Model structures and fitting criteria
    Forgione, Marco
    Piga, Dario
    EUROPEAN JOURNAL OF CONTROL, 2021, 59 : 69 - 81
  • [38] Convergence analysis of general neural networks under almost periodic stimuli
    Huang, Zhenkun
    Mohamad, S.
    Wang, Xinghua
    Feng, Chunhua
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2009, 37 (06) : 723 - 750
  • [39] Comparison of convergence and stability properties for the state and output solutions of neural networks
    Di Marco, Mauro
    Forti, Mauro
    Grazzini, Massimo
    Pancioni, Luca
    Premoli, Amedeo
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2011, 39 (07) : 751 - 774
  • [40] Parametric CMAC networks: Fundamentals and applications of a fast convergence neural structure
    Almeida, PEM
    Simoes, MG
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2003, 39 (05) : 1551 - 1557