CONVERGENCE TIME ON THE RS MODEL FOR NEURAL NETWORKS

被引:7
|
作者
Penna, T. J. P. [1 ]
de Oliveira, P. M. C. [1 ]
Arenzon, J. J. [2 ]
de Almeida, R. M. C. [2 ]
Iglesias, J. R. [2 ]
机构
[1] Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil
[2] Univ Fed Rio Grande Sul, Inst Fis, BR-91500 Porto Alegre, RS, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 1991年 / 2卷 / 03期
关键词
Neural Networks; Multispin Coding; Multineuron Models;
D O I
10.1142/S0129183191000950
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Convergence times and the corresponding dispersions have been studied numerically as parameters to measure the efficiency of neural network models. These quantities are also supposed to be related to the number of spurious states for each configuration of stored patterns. In this work we measure these quantities for a recent multineuron interaction model presenting an enhanced performance compared to other traditional schemes.
引用
收藏
页码:711 / 717
页数:7
相关论文
共 50 条
  • [21] Exponential convergence estimates for analog neural networks with multiple delays
    Chu, TG
    Wang, ZL
    Wang, L
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2715 - 2719
  • [22] Exponential convergence estimates for neural networks with discrete and distributed delays
    Fang, Shengle
    Jiang, Minghui
    Wang, Xiaohong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) : 702 - 714
  • [23] Using Euler's Method to Prove the Convergence of Neural Networks
    Jerray, Jawher
    Saoud, Adnane
    Fribourg, Laurent
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 3224 - 3228
  • [24] M-matrices and global convergence of discontinuous neural networks
    Forti, Mauro
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2007, 35 (02) : 105 - 130
  • [25] Convergence rates for shallow neural networks learned by gradient descent
    Braun, Alina
    Kohler, Michael
    Langer, Sophie
    Walk, Harro
    BERNOULLI, 2024, 30 (01) : 475 - 502
  • [26] CONVERGENCE-RATES IN SYMMETRICAL NEURAL NETWORKS WITH GLAUBER DYNAMICS
    BARAN, RH
    COUGHLIN, JP
    MATHEMATICAL AND COMPUTER MODELLING, 1990, 14 : 325 - 327
  • [27] CONVERGENCE AND DIVERGENCE IN NEURAL NETWORKS - PROCESSING OF CHAOS AND BIOLOGICAL ANALOGY
    MPITSOS, GJ
    BURTON, RM
    NEURAL NETWORKS, 1992, 5 (04) : 605 - 625
  • [28] Convergence analysis of online gradient method for BP neural networks
    Wu, Wei
    Wang, Jian
    Cheng, Mingsong
    Li, Zhengxue
    NEURAL NETWORKS, 2011, 24 (01) : 91 - 98
  • [29] Estimate of exponential convergence rate and exponential stability for neural networks
    Yi, Z
    Heng, PA
    Fu, AWC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (06): : 1487 - 1493
  • [30] Asymptotic Convergence Rate of Dropout on Shallow Linear Neural Networks
    Senen-Cerda, Albert
    Sanders, Jaron
    PROCEEDINGS OF THE ACM ON MEASUREMENT AND ANALYSIS OF COMPUTING SYSTEMS, 2022, 6 (02)