A CLASS OF NONMONOTONE STABILIZATION METHODS IN UNCONSTRAINED OPTIMIZATION

被引:122
作者
GRIPPO, L [1 ]
LAMPARIELLO, F [1 ]
LUCIDI, S [1 ]
机构
[1] CNR, IST ANAL SIST & INFORMAT, I-00185 ROME, ITALY
关键词
D O I
10.1007/BF01385810
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the solution of smooth unconstrained minimization problems by Newton-type methods whose global convergence is enforced by means of a nonmonotone stabilization strategy. In particular, a stabilization scheme is analyzed, which includes different kinds of relaxation of the descent requirements. An extensive numerical experimentation is reported.
引用
收藏
页码:779 / 805
页数:27
相关论文
共 24 条
[1]  
BERTSEKAS DP, 1980, CONSTRAINED OPTIMIZA
[2]   A GLOBALLY AND QUADRATICALLY CONVERGENT ALGORITHM FOR GENERAL NON-LINEAR PROGRAMMING-PROBLEMS [J].
BEST, MJ ;
BRAUNINGER, J ;
RITTER, K ;
ROBINSON, SM .
COMPUTING, 1981, 26 (02) :141-153
[3]  
BONNANS JF, 1989, SRCTR8942 U MAR SYST
[4]  
BROWN AA, 1987, 178 HATF POL NUM OPT
[5]  
CHAMBERLAIN RM, 1982, MATH PROGRAM STUD, V16, P1
[6]   TRUNCATED-NEWTON ALGORITHMS FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION [J].
DEMBO, RS ;
STEIHAUG, T .
MATHEMATICAL PROGRAMMING, 1983, 26 (02) :190-212
[7]  
Dennis J. E., 1983, NUMERICAL METHODS UN
[8]  
GARG NK, 1977, QDN VARIABLE STORAGE
[9]  
Gill P. E., 1974, Mathematical Programming, V7, P311, DOI 10.1007/BF01585529
[10]   A TRUNCATED NEWTON METHOD WITH NONMONOTONE LINE SEARCH FOR UNCONSTRAINED OPTIMIZATION [J].
GRIPPO, L ;
LAMPARIELLO, F ;
LUCIDI, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 60 (03) :401-419