ANALYSIS OF TIME-DOMAIN NMR DATA BY STANDARD NONLINEAR LEAST-SQUARES

被引:19
|
作者
MONTIGNY, F
BRONDEAU, J
CANET, D
机构
[1] Laboratoire de Méthodologie RMN (URA CNRS No. 406 - LESOC), Université de Nancy I, 54506 Vandœuvre-les-Nancy Cedex
关键词
D O I
10.1016/0009-2614(90)87111-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Standard non-linear least-squares are used for deriving spectral characteristics (frequency, amplitude, damping factor and phase) from time-domain NMR data (FID). The method requires initial estimates and involves an iterative process. With normal equations properly recast, the method is seen to be of general applicability within a model of damped sinusoids. The processing time is quite reasonable. Various tests demonstrate the validity of this procedure for quantitative determination purposes, especially for weak signals in the presence of intense resonances or for overlapping resonances with different linewidths. © 1990.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 50 条
  • [1] ALGORITHM FOR TIME-DOMAIN NMR DATA FITTING BASED ON TOTAL LEAST-SQUARES
    VANHUFFEL, S
    CHEN, H
    DECANNIERE, C
    VANHECKE, P
    JOURNAL OF MAGNETIC RESONANCE SERIES A, 1994, 110 (02) : 228 - 237
  • [2] NONLINEAR LEAST-SQUARES ANALYSIS OF SPECTRAL DATA
    CHANG, YS
    SHAW, JH
    USELMAN, WM
    CALVERT, JG
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (10) : 1441 - 1442
  • [3] Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data
    Asif, Muhammad Rizwan
    Foged, Nikolaj
    Maurya, Pradip Kumar
    Grombacher, Denys James
    Christiansen, Anders Vest
    Auken, Esben
    Larsen, Jakob Juul
    GEOPHYSICS, 2022, 87 (04) : E177 - E187
  • [4] Time-domain convolutive blind separation based on alternative least-squares
    Zhang H.
    Feng D.-Z.
    Pang J.-Y.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2010, 32 (10): : 2506 - 2510
  • [5] LEAST-SQUARES TIME-DOMAIN DECONVOLUTION FOR TRANSVERSAL-FILTER EQUALIZERS
    PREIS, D
    ELECTRONICS LETTERS, 1977, 13 (12) : 356 - 357
  • [6] Optimal least-squares design of pipelined recursive filters in the time-domain
    Pokala, S
    Imtiaz, M
    Shaw, AK
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 1276 - 1279
  • [7] OPTIMAL LEAST-SQUARES TIME-DOMAIN SYNTHESIS OF RECURSIVE DIGITAL FILTERS
    EVANS, AG
    FISCHL, R
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1973, AU21 (01): : 61 - 65
  • [8] NONLINEAR LEAST-SQUARES ANALYSIS
    JOHNSON, ML
    FRASIER, SG
    METHODS IN ENZYMOLOGY, 1985, 117 : 301 - 342
  • [9] Linear or Nonlinear Least-Squares Analysis of Kinetic Data?
    Perrin, Charles L.
    JOURNAL OF CHEMICAL EDUCATION, 2017, 94 (06) : 669 - 672
  • [10] Simplex method of nonlinear least-squares - A logical complementary method to linear least-squares analysis of data
    Lieb, SG
    JOURNAL OF CHEMICAL EDUCATION, 1997, 74 (08) : 1008 - 1011