3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

被引:7
作者
Kramar, Maxim [1 ]
Airapetian, Vladimir [2 ,3 ]
Lin, Haosheng [4 ]
机构
[1] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA
[2] George Mason Univ, Dept Phys & Astron, Fairfax, VA 22030 USA
[3] NASA, Goddard Space Flight Ctr, Code 671, Greenbelt, MD 20771 USA
[4] Univ Hawaii Manoa, Inst Astron, Coll Nat Sci, Pukalani, HI USA
来源
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES | 2016年 / 3卷
关键词
Sun; corona; electron density; magnetic field; tomography;
D O I
10.3389/fspas.2016.00025
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R-circle dot using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 angstrom band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below similar to 2.5 R-circle dot. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.
引用
收藏
页数:8
相关论文
共 15 条
  • [1] MAGNETIC FIELDS AND STRUCTURE OF SOLAR CORONA .I. METHODS OF CALCULATING CORONAL FIELDS
    ALTSCHULER, MD
    NEWKIRK, G
    [J]. SOLAR PHYSICS, 1969, 9 (01) : 131 - +
  • [2] A "breathing" source surface for cycles 23 and 24
    Arden, W. M.
    Norton, A. A.
    Sun, X.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (03) : 1476 - 1485
  • [3] Boffin H. M. J., 2001, LECT NOTES PHYS, V573
  • [4] GLOBAL TRENDS OF CME DEFLECTIONS BASED ON CME AND SOLAR PARAMETERS
    Kay, C.
    Opher, M.
    Evans, R. M.
    [J]. ASTROPHYSICAL JOURNAL, 2015, 805 (02)
  • [5] Vector tomography for the coronal magnetic field - I. Longitudinal Zeeman effect measurements
    Kramar, M.
    Inhester, B.
    Solanki, S. K.
    [J]. ASTRONOMY & ASTROPHYSICS, 2006, 456 (02) : 665 - 673
  • [6] DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS
    Kramar, M.
    Lin, H.
    Tomczyk, S.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2016, 819 (02)
  • [7] 3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum
    Kramar, M.
    Airapetian, V.
    Mikic, Z.
    Davila, J.
    [J]. SOLAR PHYSICS, 2014, 289 (08) : 2927 - 2944
  • [8] VECTOR TOMOGRAPHY FOR THE CORONAL MAGNETIC FIELD. II. HANLE EFFECT MEASUREMENTS
    Kramar, M.
    Inhester, B.
    Lin, H.
    Davila, J.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 775 (01)
  • [9] On the Tomographic Reconstruction of the 3D Electron Density for the Solar Corona from STEREO COR1 Data
    Kramar, M.
    Jones, S.
    Davila, J.
    Inhester, B.
    Mierla, M.
    [J]. SOLAR PHYSICS, 2009, 259 (1-2) : 109 - 121
  • [10] Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered
    Lee, C. O.
    Luhmann, J. G.
    Hoeksema, J. T.
    Sun, X.
    Arge, C. N.
    de Pater, I.
    [J]. SOLAR PHYSICS, 2011, 269 (02) : 367 - 388