UNIFORM, SOBOLEV EXTENSION AND QUASI-CONFORMAL CIRCLE DOMAINS

被引:36
作者
HERRON, DA [1 ]
KOSKELA, P [1 ]
机构
[1] UNIV JYVASKYLA,DEPT MATH,SF-40100 JYVASKYLA,FINLAND
来源
JOURNAL D ANALYSE MATHEMATIQUE | 1991年 / 57卷
关键词
D O I
10.1007/BF03041069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Abstract. This paper contributes to the theory of uniform domains and Sobolev extension domains. We present new features of these domains and exhibit numerous relations among them. We examine two types of Sobolev extension domains, demonstrate their equivalence for bounded domains and generalize known sufficient geometric conditions for them. We observe that in the plane essentially all of these domains possess the trait that there is a quasiconformal self-homeomorphism of the extended plane which maps a given domain conformally onto a circle domain. We establish a geometric condition enjoyed by these plane domains which characterizes them among all quasicircle domains having no large and no small boundary components.
引用
收藏
页码:172 / 202
页数:31
相关论文
共 25 条
  • [1] ADAMS RA, 1975, PURE APPLIED MATH, V65
  • [2] ON QUASICONFORMAL RIGIDITY IN SPACE AND PLANE
    ASTALA, K
    HEINONEN, J
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1988, 13 (01): : 81 - 92
  • [3] THE BOUNDARY CORRESPONDENCE UNDER QUASICON-FORMAL MAPPINGS
    BEURLING, A
    AHLFORS, L
    [J]. ACTA MATHEMATICA, 1956, 96 (1-2) : 125 - 142
  • [4] Gehring F. W., 1987, JAHRESBER DTSCH MATH, V89, P88
  • [5] LIPSCHITZ CLASSES AND QUASI-CONFORMAL MAPPINGS
    GEHRING, FW
    MARTIO, O
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01): : 203 - 219
  • [6] QUASIEXTREMAL DISTANCE DOMAINS AND EXTENSION OF QUASI-CONFORMAL MAPPINGS
    GEHRING, FW
    MARTIO, O
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1985, 45 : 181 - 206
  • [7] Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
  • [8] Goldshtein V.M., 1990, QUASICONFORMAL MAPPI
  • [9] Herron D., 1990, COMPLEX VARIABLES TH, V15, P167, DOI DOI 10.1080/17476939008814448
  • [10] THE GEOMETRY OF UNIFORM, QUASICIRCLE, AND CIRCLE DOMAINS
    HERRON, DA
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1987, 12 (02): : 217 - 227