The Circular Law. Twenty years later. Part III

被引:23
作者
Girko, V. L. [1 ]
机构
[1] Univ North Carolina Charlotte, Dept Math, Charlotte, NC 28223 USA
关键词
D O I
10.1163/1569397053300946
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we apply the REFORM method[ 3, 4] to the deduction of the system of canonical equations for normalized spectral functions of the matrices A(n)+ BnUn(epsilon) C-n, where A(n), B-n and Cn are nonrandom matrices, and U-n(epsilon) is random matrix from class C-12[ 26] or from the following class C-13 of distributions of random matrices: U-n(epsilon) = lim beta down arrow 0 (SIC)(n()(SIC)(n)* (SIC)(n) + I-n beta)1/2 + epsilon H-n, where epsilon not equal 0, (SIC)(n) = (xi((n))(n)(ij))(i, j= 1) and H-n = (eta((n))(ij))(n)(i, j= 1) are independent random real matrices whose entries. (xi((n))(ij)) i, j = 1 and. (eta((n))(ij)) i, j = 1 are independent for every n, E. (n) ij = 0, E (xi((n))(ij)) ij = 0, E vertical bar xi((n))(2)(i, j broken vertical bar) = n(-) E eta((n)) (ij) = 0, E|n(ij)((n))|(2) = n(-1), i, j = 1,..., n, and for a certain delta > 0 the Lyapunov condition is fulfilled: E vertical bar(eta((n))(ij) root n vertical bar(2+delta) < c < infinity, i, j = 1,..., n. E xi((n))(ij) =0 E vertical bar(eta((n))(ij) root n vertical bar(2+delta) < c < infinity, i, j = 1,..., n. This problem has been considered in some publications for matrices A(n) + U-n, where Unitary matrix Un from the class C1[ 26] is distributed by Haar measure, at the "ad hoc" level, without a strong proof, on the basis of heuristic calculations. Therefore, the behavior of limit n. s. f. of the sum of a random Unitary matrix Un and a nonrandom matrix An has not been discovered. Many conclusions of various kinds have been presented in the literature (see [13-27]) for random matrices A(n) + (SIC)(n)B-n, where.n is the random matrix with independent entries, concerning, for example, the effectiveness of the REFORM method and the role of the martingale difference representation for the resolvent of random matrices.
引用
收藏
页码:53 / 109
页数:57
相关论文
共 28 条
[1]  
[Anonymous], CRC CONCISE ENCY MAT, P737
[2]  
Biane P., COMPUTATION SOME EXA
[3]  
GIRKO V, 2001, THEORY STOCHASTIC CA, V2
[4]  
Girko V.L., 1997, RANDOM OPER STOCH EQ, V5, P269, DOI DOI 10.1515/ROSE.1997.5.3.269
[5]  
Girko V. L., 2001, THEORY STOCHASTIC CA, VII
[6]  
Girko V. L., 1996, THEORY LINEAR ALGEBR
[7]  
Girko V. L., 1985, DOCLADY USSR M, V1, P3
[8]  
Girko V. L., 1998, MARKOV PROCESS RELAT, V4, P499
[9]  
Girko V. L., 1998, INTRO STAT ANAL RAND
[10]  
Girko V. L., 2002, RANDOM OPER STOCH EQ, V10, P141