EQUIVALENCE OF LIGHT-FRONT AND COVARIANT FIELD-THEORY

被引:56
作者
LIGTERINK, NE
BAKKER, BLG
机构
[1] Department of Physics and Astronomy, Vrije Universiteit, Amsterdam
来源
PHYSICAL REVIEW D | 1995年 / 52卷 / 10期
关键词
D O I
10.1103/PhysRevD.52.5954
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we discuss the relation between the standard covariant quantum held theory and light-front field theory. We define covariant theory by its Feynman diagrams, whereas light-front held theory is defined in terms of light-cone time-ordered diagrams. A general algorithm is proposed that produces the latter from any Feynman diagram. The procedure is illustrated in several cases. Technical problems that occur in the light-front formulation and have no counterpart in the covariant formulation are identified and solved. The problem of renormalization is not discussed in this paper.
引用
收藏
页码:5954 / 5979
页数:26
相关论文
共 59 条
[21]   NONTRIVIAL VACUUM-STRUCTURE IN LIGHT-CONE QUANTUM-FIELD THEORY [J].
HEINZL, T ;
KRUSCHE, S ;
WERNER, E .
PHYSICS LETTERS B, 1991, 256 (01) :55-59
[22]   NONPERTURBATIVE LIGHT-CONE QUANTUM-FIELD THEORY BEYOND THE TREE LEVEL [J].
HEINZL, T ;
KRUSCHE, S ;
SIMBURGER, S ;
WERNER, E .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 56 (03) :415-420
[23]  
Henneaux M., 1993, QUANTIZATION GAUGE S
[24]  
Hormander L., 1963, ACT C INT MATH
[25]   ON THE ZERO MODE PROBLEM OF THE LIGHT-CONE QUANTIZATION [J].
HUANG, SZ ;
LIN, W .
ANNALS OF PHYSICS, 1993, 226 (02) :248-270
[26]   CANONICAL FORMALISM ON A LIGHTLIKE HYPERPLANE [J].
IDA, M .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1977, 40 (03) :354-367
[27]  
JACKIW R, 1972, CANONICAL LIGHT CONE, V62
[28]  
KADESHEVSKY VG, 1964, ZH EKSP TEOR FIZ, V46, P872
[29]  
KADESHEVSKY VG, 1964, ZH EKSP TEOR FIZ, V19, P597
[30]  
KADESHEVSKY VG, 1964, ZH EKSP TEOR FIZ, V46, P654