On edge colorings of 1-planar graphs with 6-cycles having at most three chords

被引:0
作者
Sun, Lin [1 ]
Wu, Jian-Liang [1 ]
Cai, Hua [1 ]
Luo, ZhaoYang [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2015年 / 53卷 / 01期
关键词
1-planar graphs; edge coloring; discharging method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that every 1-planar graph with 6-cycles having at most three chords and with maximum degree Delta = 9 can be edge-colored by Delta colors.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 12 条
[1]  
Bondy JA., 1976, GRADUATE TEXTS MATH
[2]   Some sufficient conditions for a planar graph of maximum degree six to be Class 1 [J].
Bu, Yuehua ;
Wang, Weifan .
DISCRETE MATHEMATICS, 2006, 306 (13) :1440-1445
[3]  
Fiorini S, 1977, EDGE COLOURINGS GRAP
[4]   The Size of Edge Chromatic Critical Graphs with Maximum Degree 6 [J].
Luo, Rong ;
Miao, Lianying ;
Zhao, Yue .
JOURNAL OF GRAPH THEORY, 2009, 60 (02) :149-171
[5]  
Ringel G., 1965, ABH MATH SEM HAMBURG, V29, P107, DOI [10.1007/BF02996313, DOI 10.1007/BF02996313]
[6]   Planar graphs of maximum degree seven are class I [J].
Sanders, DP ;
Zhao, Y .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :201-212
[7]  
Sun YF, 2013, INT J APPL MATH STAT, V42, P361
[8]  
Vizing V. G., 1965, DISKRET ANAL, V5, P17
[9]  
Vizing V.G, 1968, RUSSIAN MATH SURVEYS, V23, P117
[10]   Every planar graph with maximum degree 7 is of class 1 [J].
Zhang, LM .
GRAPHS AND COMBINATORICS, 2000, 16 (04) :467-495