Learning an Approximate Model Predictive Controller With Guarantees

被引:190
作者
Hertneck, Michael [1 ]
Koehler, Johannes [2 ]
Trimpe, Sebastian [3 ]
Allgoewer, Frank [2 ]
机构
[1] Univ Stuttgart, Fac Engn Design Prod Engn & Automot Engn, D-70550 Stuttgart, Germany
[2] Univ Stuttgart, Inst Syst Theory & Automat Control, D-70550 Stuttgart, Germany
[3] Max Planck Inst Intelligent Syst, Intelligent Control Syst Grp, D-70569 Stuttgart, Germany
来源
IEEE CONTROL SYSTEMS LETTERS | 2018年 / 2卷 / 03期
关键词
Predictive control for nonlinear systems; machine learning; constrained control;
D O I
10.1109/LCSYS.2018.2843682
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A supervised learning framework is proposed to approximate a model predictive controller (MPC) with reduced computational complexity and guarantees on stability and constraint satisfaction. The framework can be used for a wide class of nonlinear systems. Any standard supervised learning technique (e.g., neural networks) can be employed to approximate the MPC from samples. In order to obtain closed-loop guarantees for the learned MPC, a robust MPC design is combined with statistical learning bounds. The MPC design ensures robustness to inaccurate inputs within given bounds, and Hoeffding's Inequality is used to validate that the learned MPC satisfies these bounds with high confidence. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the learned MPC. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem, for which we learn a neural network controller with guarantees.
引用
收藏
页码:543 / 548
页数:6
相关论文
共 25 条
[1]   A neural network model predictive controller [J].
Akesson, Bernt M. ;
Toivonen, Hannu T. .
JOURNAL OF PROCESS CONTROL, 2006, 16 (09) :937-946
[2]  
Andersson J, 2013, THESIS KU LEUVEN LEU
[3]   Deep Reinforcement Learning A brief survey [J].
Arulkumaran, Kai ;
Deisenroth, Marc Peter ;
Brundage, Miles ;
Bharath, Anil Anthony .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (06) :26-38
[4]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[5]  
Canale M, 2009, LECT NOTES CONTR INF, V384, P461, DOI 10.1007/978-3-642-01094-1_36
[6]   Support Vector Machine Informed Explicit Nonlinear Model Predictive Control Using Low-Discrepancy Sequences [J].
Chakrabarty, Ankush ;
Dinh, Vu ;
Corless, Martin J. ;
Rundell, Ann E. ;
Zak, Stanislaw H. ;
Buzzard, Gregery T. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (01) :135-148
[7]   A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability [J].
Chen, H ;
Allgower, F .
AUTOMATICA, 1998, 34 (10) :1205-1217
[8]   Systems with persistent disturbances: predictive control with restricted constraints [J].
Chisci, L ;
Rossiter, JA ;
Zappa, G .
AUTOMATICA, 2001, 37 (07) :1019-1028
[9]  
Domahidi A, 2011, IEEE DECIS CONTR P, P513, DOI 10.1109/CDC.2011.6161258
[10]   Semi-explicit MPC based on subspace clustering [J].
Goebel, Gregor ;
Allgoewer, Frank .
AUTOMATICA, 2017, 83 :309-316