ON THE REGULARITY THEORY OF FULLY NONLINEAR PARABOLIC EQUATIONS .2.

被引:178
作者
WANG, L
机构
[1] Princeton University, Princeton, New Jersey
关键词
D O I
10.1002/cpa.3160450202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:141 / 178
页数:38
相关论文
共 14 条
[1]   INTERIOR A PRIORI ESTIMATES FOR SOLUTIONS OF FULLY NON-LINEAR EQUATIONS [J].
CAFFARELLI, LA .
ANNALS OF MATHEMATICS, 1989, 130 (01) :189-213
[2]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[3]  
EVANS LC, 1982, COMMUN PUR APPL MATH, V25, P333
[4]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF
[5]   PERRON METHOD FOR HAMILTON-JACOBI EQUATIONS [J].
ISHII, H .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) :369-384
[6]   ON UNIQUENESS AND EXISTENCE OF VISCOSITY SOLUTIONS OF FULLY NONLINEAR 2ND-ORDER ELLIPTIC PDES [J].
ISHII, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (01) :15-45
[8]   DEGENERATE ELLIPTIC-PARABOLIC EQUATIONS OF SECOND ORDER [J].
KOHN, JJ ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1967, 20 (04) :797-+
[9]  
Krylov N.V., 1985, NONLINEAR ELLIPTIC P
[10]  
KRYLOV NV, 1983, DOKL AKAD NAUK SSSR, V274, P21