A Two-Phase Global Optimization Algorithm for Black-Box Functions

被引:0
作者
Gimbutiene, Grazina [1 ]
Zilinskas, Antanas [1 ]
机构
[1] Vilnius State Univ, Inst Math & Informat, Akad Str 4, LT-2600 Vilnius, Lithuania
来源
BALTIC JOURNAL OF MODERN COMPUTING | 2015年 / 3卷 / 03期
关键词
global optimization; statistical models; two-phase algorithm;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A modification of the global optimization algorithm, rooted in the statistical theory of global optimization, is proposed. The original method is based on the hyper-rectangular partition of the feasible region where a hyper-rectangle for subdivision is selected using a criterion related to the probability of improvement. The idea of the modification is in the coordination of local and global phases of search. The testing results show that the proposed modification improves the performance of the original algorithm.
引用
收藏
页码:214 / 224
页数:11
相关论文
共 50 条
[21]   Noisy Multiobjective Black-Box Optimization using Bayesian Optimization [J].
Wang, Hongyan ;
Xu, Hua ;
Yuan, Yuan ;
Deng, Junhui ;
Sun, Xiaomin .
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, :239-240
[22]   Black-Box Optimization Revisited: Improving Algorithm Selection Wizards Through Massive Benchmarking [J].
Meunier, Laurent ;
Rakotoarison, Herilalaina ;
Wong, Pak Kan ;
Roziere, Baptiste ;
Rapin, Jeremy ;
Teytaud, Olivier ;
Moreau, Antoine ;
Doerr, Carola .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (03) :490-500
[23]   Surrogate-based methods for black-box optimization [J].
Ky Khac Vu ;
D'Ambrosio, Claudia ;
Hamadi, Youssef ;
Liberti, Leo .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2017, 24 (03) :393-424
[24]   Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions [J].
Rommel G. Regis ;
Christine A. Shoemaker .
Journal of Global Optimization, 2005, 31 :153-171
[25]   Constrained global optimization of expensive black box functions using radial basis functions [J].
Regis, RG ;
Shoemaker, CA .
JOURNAL OF GLOBAL OPTIMIZATION, 2005, 31 (01) :153-171
[26]   Black-Box Optimization by Fourier Analysis and Swarm Intelligence [J].
Lim, Eldin Wee Chuan ;
New, Jin Rou .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2012, 45 (06) :417-428
[27]   Constrained robust Bayesian optimization of expensive noisy black-box functions with guaranteed regret bounds [J].
Kudva, Akshay ;
Sorourifar, Farshud ;
Paulson, Joel A. .
AICHE JOURNAL, 2022, 68 (12)
[28]   Large-Scale Discrete Constrained Black-Box Optimization Using Radial Basis Functions [J].
Regis, Rommel G. .
2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, :2924-2931
[29]   Reliable Space Pursuing for Reliability-based Design Optimization with Black-box Performance Functions [J].
Shan Songqing ;
Gary, Wang G. .
CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2009, 22 (01) :27-35
[30]   An adaptive framework for costly black-box global optimization based on radial basis function interpolation [J].
Zhe Zhou ;
Fusheng Bai .
Journal of Global Optimization, 2018, 70 :757-781