Invariant and statistically weakly invariant sets of control systems

被引:0
作者
Rodina, L. I. [1 ,2 ]
机构
[1] Udmurt State Univ, Phys & Math, Ul Univ Skaya 1, Izhevsk 426034, Russia
[2] Udmurt State Univ, Izhevsk 426034, Russia
来源
IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA | 2012年 / 02期
关键词
control systems; dynamical systems; differential inclusions; statistically invariant sets;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the expansion of the concept of the set invariance with respect to control systems and differential inclusions. Said expansions that statistically invariant and statistically weakly invariant sets are studied. The sufficient conditions for existence of invariant (in the specified sense) sets, which are formulated in terms of the Hausdorff-Bebutov metric, Lyapunov functions and the Clarke derivative, of the given functions are obtained. The work covers both determined systems and the systems with random parameters, for which the concept of statistical invariance with probability one is investigated. The problems about complete controllability of time-varying linear system and about the existence of non-predicting control for linear system with random parameters are considered, too.
引用
收藏
页码:3 / 164
页数:162
相关论文
共 232 条
  • [1] ADOMIAN D, 1987, STOKHASTICHESKIE SIS
  • [2] Agrachev A.A., 2005, GEOMETRICHESKAYA TEO
  • [3] ANDREEV NI, 1980, TEORIYA STATISTICHES
  • [4] [Anonymous], 1991, DIFF URAVN
  • [5] ANOSOV DV, 1985, SOVREMENNYE PROBLEMY, V1
  • [6] Arnol'd VI, 1999, ERGODICHESKIE PROBLE
  • [7] Arnold L., 1998, SPRINGER MONOGRAPHS
  • [8] Asnis I. A., 1985, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V25, P1644
  • [9] ASTAPOV YM, 1982, STATISTICHESKAYA TEO
  • [10] Aubin, 1984, DIFFERENTIAL INCLUSI, V264, DOI [DOI 10.1007/978-3-642-69512-4, 10.1007/978-3-642-69512-4]