MILD INTEGRABILITY CONDITIONS FOR GLOBAL-SOLUTIONS OF AN ELLIPTIC EQUATION

被引:0
作者
TRENCH, WF [1 ]
机构
[1] TRINITY UNIV,DEPT MATH,SAN ANTONIO,TX 78212
关键词
SEMILINEAR; ELLIPTIC; RADIALLY SYMMETRICAL; EMDEN-FOWLER; ASYMPTOTIC BEHAVIOR; MILD INTEGRABILITY ASSUMPTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the equation DELTA-u + p(Absolute value of x)u(gamma) = 0 has positive radially symmetric solutions on a given exterior domain E(a) = {x is-an-element-of R(n)\Absolute value of x > a greater-than-or-equal-to 0} which behave asymptotically (as Absolute value of x --> infinity) like constant multiples of the radial solutions v1 = 1 and v2 = Absolute value of x(-n + 2) of DELTA-v = 0, provided that p = p(t) satisfies certain integrability conditions on (a, infinity). The integrability conditions are weaker than those usually imposed.
引用
收藏
页码:39 / 48
页数:10
相关论文
共 15 条
[1]   AN ODE APPROACH TO THE EXISTENCE OF POSITIVE SOLUTIONS FOR SEMI-LINEAR PROBLEMS IN RN [J].
BERESTYCKI, H ;
LIONS, PL ;
PELETIER, LA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (01) :141-157
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]  
BERESTYCKI H, 1978, CR ACAD SCI A MATH, V287, P503
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[5]  
BERESTYCKI H, 1980, VARIATIONAL INEQUALI
[6]  
Kawano N., 1982, HIROSHIMA MATH J, V12, P141
[7]  
KUSANO M, 1988, CAN J MATH, V6, P1281
[8]   ENTIRE SOLUTIONS OF A CLASS OF EVEN ORDER QUASI-LINEAR ELLIPTIC-EQUATIONS [J].
KUSANO, T ;
NAITO, M ;
SWANSON, CA .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (02) :151-163
[9]  
KUSANO T, 1985, J LOND MATH SOC, V31, P478
[10]   EXISTENCE OF GLOBAL-SOLUTIONS WITH PRESCRIBED ASYMPTOTIC-BEHAVIOR FOR NONLINEAR ORDINARY DIFFERENTIAL-EQUATIONS [J].
KUSANO, T ;
TRENCH, WF .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1985, 142 :381-392