BINDING NUMBERS AND F-FACTORS OF GRAPHS

被引:26
作者
KANO, M [1 ]
TOKUSHIGE, N [1 ]
机构
[1] MEIJI UNIV,DEPT COMP SCI,TAMA KU,KAWASAKI 214,JAPAN
关键词
D O I
10.1016/0095-8956(92)90053-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph of order n, a and b be integers such that 1 ≤ a ≤ b and 2 ≤ b, and f: V(G) → {a, a + 1, ..., b} be a function such that Σ(f(x); x ∈ V(G)) ≡ 0 (mod 2). We prove the following two results: (i) If the binding number of G is greater than (a + b -1)(n-1) (an-(a + b) + 3) and n ≥ (a + b)2 a, then G has an f-factor; (ii) If the minimum degree of G is greater than (bn - 2) (a + b), and n ≥ (a + b)2 a, then G has an f-factor. © 1992.
引用
收藏
页码:213 / 221
页数:9
相关论文
共 13 条
[1]  
ANDERSON I, 1972, P EDINBURGH MATH SOC, V18, P129
[2]  
[Anonymous], 1971, J COMBIN THEORY
[3]  
EGAWA Y, 1989, RECENT STUDIES GRAPH, P96
[4]   A SUFFICIENT CONDITION FOR A BIPARTITE GRAPH TO HAVE A K-FACTOR [J].
ENOMOTO, H ;
OTA, K ;
KANO, M .
JOURNAL OF GRAPH THEORY, 1988, 12 (01) :141-151
[5]   A SUFFICIENT CONDITION FOR A GRAPH TO HAVE [A,B]-FACTORS [J].
KANO, M .
GRAPHS AND COMBINATORICS, 1990, 6 (03) :245-251
[6]   MINIMUM DEGREE OF A GRAPH AND THE EXISTENCE OF K-FACTORS [J].
KATERINIS, P .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1985, 94 (2-3) :123-127
[7]   2 SUFFICIENT CONDITIONS FOR A 2-FACTOR IN A BIPARTITE GRAPH [J].
KATERINIS, P .
JOURNAL OF GRAPH THEORY, 1987, 11 (01) :1-6
[8]   BINDING NUMBERS OF GRAPHS AND THE EXISTENCE OF K-FACTORS [J].
KATERINIS, P ;
WOODALL, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1987, 38 (150) :221-228
[9]   BINDING NUMBER AND MINIMUM DEGREE FOR K-FACTORS [J].
TOKUSHIGE, N .
JOURNAL OF GRAPH THEORY, 1989, 13 (05) :607-617
[10]   A SHORT PROOF OF THE FACTOR THEOREM FOR FINITE GRAPHS [J].
TUTTE, WT .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (03) :347-352