SOME ALGEBRAIC PROBLEMS IN CONNECTION WITH GENERAL EIGENVALUE ALGORITHMS

被引:28
作者
ELSNER, L
机构
[1] Fakultät für Mathematik Universität Bielefeld, 4800 Bielefeld 1
关键词
D O I
10.1016/0024-3795(79)90175-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two real matrices A,B are S-congruent if there is a nonsingular upper triangular matrix R such that A = RTBR. This congruence relation is studied in the set of all nonsingular symmetric and that of all skew-symmetric matrices. Invariants and systems of representation are give. The results are applied to the question of decomposability of a matrix in a product of an isometry and an upper triangular matrix, a problem crucial in eigenvalue algorithms. © 1979.
引用
收藏
页码:123 / 138
页数:16
相关论文
共 10 条
[1]  
Artin E., 1988, GEOMETRIC ALGEBRA, DOI 10.1002/9781118164518
[2]  
BENISRAEL A, GENERALIZED INVERSES
[3]  
Brebner M. A., 1974, 245 U CALG DEP MATH
[4]  
BUNSEGERSTNER A, 1978, THESIS U BIELEFELD
[5]   NUMERICAL LINEAR ALGORITHMS AND GROUP-THEORY [J].
DELLADORA, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :267-283
[6]  
DELLADORA J, 1973, THESIS FS GRENOBLE
[7]  
Gantmacher F., 1959, THEORY MATRICES, VI
[8]  
GEISLER R, 1976, NUMERISCHE BEHANDLUN
[9]  
GRAD J, 1974, 238 U CALG DEP MATH
[10]  
Marcus M., 1964, SURVEY MATRIX THEORY