On Solving the (2+1)-Dimensional Nonlinear Cubic-Quintic Ginzburg-Landau Equation Using Five Different Techniques

被引:0
|
作者
Zayed, Elsayed M. E. [1 ]
Al-Nowehy, A. -G [2 ]
Elshater, Mona E. M. [1 ]
机构
[1] Zagazig Univ, Fac Sci, Math Dept, POB 44519, Zagazig, Egypt
[2] Taiz Univ, Fac Educ & Sci, Math Dept, Taizi, Yemen
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2018年 / 31卷 / 02期
关键词
(G'/G)-expansion method; auxiliary equation method; modified simple equation method; first integral method; Riccati equation method; exact traveling wave solutions; solitary wave solutions; Cubic-quintic Ginzburg-Landau equation;
D O I
10.4208/jpde.v31.n2.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we apply five different techniques, namely the (G'/G)-expansion method, an auxiliary equation method, the modified simple equation method, the first integral method and the Riccati equation method for constructing many new exact solutions with parameters as well as the bright-dark, singular and other soliton solutions of the (2+l)-dimensional nonlinear cubic-quintic Ginzburg-Landau equation. Comparing the solutions of this nonlinear equation together with each other are presented. Comparing our new results obtained in this article with the well-known results are given too.
引用
收藏
页码:97 / 118
页数:22
相关论文
共 50 条
  • [1] Homoclinic orbit for the cubic-quintic Ginzburg-Landau equation
    Xu, PC
    Chang, QS
    CHAOS SOLITONS & FRACTALS, 1999, 10 (07) : 1161 - 1170
  • [2] On a cubic-quintic Ginzburg-Landau equation with global coupling
    Wei, JC
    Winter, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1787 - 1796
  • [3] Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation
    Kalashnikov, V. L.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [4] Traveling wavetrains in the complex cubic-quintic Ginzburg-Landau equation
    Mancas, SC
    Choudhury, SR
    CHAOS SOLITONS & FRACTALS, 2006, 28 (03) : 834 - 843
  • [5] Optical vortices in the Ginzburg-Landau equation with cubic-quintic nonlinearity
    Wu, Zhenkun
    Wang, Zhiping
    NONLINEAR DYNAMICS, 2018, 94 (04) : 2363 - 2371
  • [6] Modulated amplitude waves in the cubic-quintic Ginzburg-Landau equation
    Choudhury, SR
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (3-4) : 243 - 256
  • [7] Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg-Landau equation
    Akram, Ghazala
    Mahak, Nadia
    OPTIK, 2018, 164 : 210 - 217
  • [8] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [9] Breathing Solitons for the One-Dimensional Nonlinear Cubic-Quintic Complex Ginzburg-Landau Equation (cqCGLE)
    Razali, Nur Shafika Abel
    Abdullah, Farah Aini
    Abu Hasan, Yahya
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 131 - 136
  • [10] Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation
    J. B. Gonpe Tafo
    L. Nana
    T. C. Kofane
    The European Physical Journal Plus, 127