A SPECTRAL ELEMENT METHODOLOGY TUNED TO PARALLEL IMPLEMENTATIONS

被引:26
作者
BENBELGACEM, F
MADAY, Y
机构
[1] Laboratoire d'Analyse Numerique, Universite Pierre et Marie Curie
关键词
D O I
10.1016/S0045-7825(94)80008-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present in this paper a modification of the conforming spectral element method for the approximation of the Poisson equation. This new procedure allows the implementation on a parallel machine in an easier and faster way. The resulting method is nonconforming but the numerical analysis shows that the error between the exact solution and the discrete solution is of the same asymptotic order as the error of the original conforming method.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 13 条
[1]  
BERNARDI C, 1992, NONLINEAR PARTIAL DI
[2]  
BERNARDI C, 1992, R92013 U P M CUR LAB
[3]  
BERNARDI C, 1992, MATH APPLICATIONS
[4]  
BERNARDI C, 1989, J APPL NUMER METHODS, V6, P33
[5]  
FISCHER P, COMMUNICATION
[6]   PARALLEL SPECTRAL ELEMENT SOLUTION OF THE STOKES PROBLEM [J].
FISCHER, PF ;
PATERA, AT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (02) :380-421
[7]   SPECTRAL ELEMENT METHODS FOR LARGE-SCALE PARALLEL NAVIER-STOKES CALCULATIONS [J].
FISCHER, PF ;
RONQUIST, EM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :69-76
[8]  
FISCHER PF, 1989, THESIS MIT
[9]  
HENDERSON R, 1992, UNSTRUCTURED SCI COM
[10]   OPTIMAL ERROR ANALYSIS OF SPECTRAL METHODS WITH EMPHASIS ON NONCONSTANT COEFFICIENTS AND DEFORMED GEOMETRIES [J].
MADAY, Y ;
RONQUIST, EM .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 80 (1-3) :91-115