INVARIANT COMPLEX STRUCTURES ON 4-DIMENSIONAL SOLVABLE REAL LIE-GROUPS

被引:34
作者
SNOW, JE
机构
[1] Department of Mathematics, Saint Mary's College, Notre Dame, 46556, IN
关键词
D O I
10.1007/BF02568505
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, invariant complex structures on four-dimensional, solvable, simply-connected real Lie groups are classified where the dimension of the commutator is less than three. The resulting complex surfaces corresponding to these structures are also determined. The classification problem is reduced to determining certain complex "structure" subalgebras of the complexifications of the four-dimensional, solvable real Lie algebras. Most of the eleven types of non-abelian solvable real Lie algebras do have complex structure subalgebras; three do not. Only three types of algebras have solvable complex structure subalgebras, and only one possesses both abelian and solvable complex structure subalgebras. Each of the possible homogeneous surfaces is represented in the list of resulting manifolds. © 1990 Springer-Verlag.
引用
收藏
页码:397 / 412
页数:16
相关论文
共 9 条
  • [1] ZUR DIFFERENTIALGEOMETRIE DER KOMPLEXEN STRUKTUREN
    FROLICHER, A
    [J]. MATHEMATISCHE ANNALEN, 1955, 129 (01) : 50 - 95
  • [2] A CLASSIFICATION OF HOMOGENEOUS SURFACES
    HUCKLEBERRY, AT
    LIVORNI, EL
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (05): : 1097 - 1110
  • [3] MORIMOTO A, 1956, CR HEBD ACAD SCI, V242, P1101
  • [4] HOMOGENEOUS COMPLEX-SURFACES
    OELJEKLAUS, K
    RICHTHOFER, W
    [J]. MATHEMATISCHE ANNALEN, 1984, 268 (03) : 273 - 292
  • [5] Sasaki T., 1982, Kumamoto Journal of Science (Mathematics), V15, P59
  • [6] Sasaki T., 1981, Kumamoto Journal of Science (Mathematics), V14, P115
  • [7] SNOW DM, 1986, J REINE ANGEW MATH, V371, P191
  • [8] SNOW JE, 1986, I ELIE CARTAN, V10, P57
  • [9] Wang H. C., 1954, AM J MATH, V76, P1, DOI 10.2307/2372397