On Bounds for Moments of Unimodal Distributions

被引:0
作者
Sharma, R. [1 ]
Bhandari, R. [1 ]
机构
[1] Himachal Pradesh Univ, Dept Math & Stat, Shimla 171005, India
关键词
Discrete distributions; harmonic mean; Kantorovich inequality; moments; unimodal distributions; variance;
D O I
10.5351/CSAM.2014.21.3.201
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a simple basic method to find bounds for higher order moments of unimodal distributions in terms of lower order moments when the random variable takes value in a given finite real interval. The bounds for moments in terms of the geometric mean of the distribution are also derived. Both continuous and discrete cases are considered. The bounds for the ratio and difference of moments are obtained. The special cases provide refinements of several well-known inequalities, such as Kantorovich inequality and Krasnosel'skii and Krein inequality.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 13 条
[1]   VARIANCE UPPER-BOUNDS AND CONVOLUTIONS OF ALPHA-UNIMODAL DISTRIBUTIONS [J].
ABOUAMMOH, AM ;
MASHHOUR, AF .
STATISTICS & PROBABILITY LETTERS, 1994, 21 (04) :281-289
[2]   UPPER-BOUNDS FOR THE VARIANCES OF CERTAIN RANDOM-VARIABLES [J].
DHARMADHIKARI, SW ;
JOAGDEV, K .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (09) :3235-3247
[3]   ON LEAST FAVORABLE DENSITY FUNCTIONS [J].
GRAY, HL ;
ODELL, PL .
SIAM REVIEW, 1967, 9 (04) :715-&
[4]   MAXIMUM VARIANCE OF RESTRICTED UNIMODAL DISTRIBUTIONS [J].
JACOBSON, HI .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (05) :1746-&
[5]  
Kantorovich LV., 1948, USP MAT NAUK, V3, P89
[6]   SOME RESULTS FOR DISCRETE UNIMODALITY [J].
KEILSON, J ;
GERBER, H .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1971, 66 (334) :386-389
[7]  
Krasnoselskii M.A, 1952, MAT SBORNIK NS, V31, P315
[8]  
MEDGYESSY P, 1972, PERIOD MATH HUNG, V2, P245
[9]  
Popoviciu T., 1935, MATHEMATICA, V9, P129
[10]  
Seaman J. W., 1987, MATH SCI, V12, P109