Involutions on Generating Functions

被引:0
作者
Kida, Masanari [1 ]
Urata, Yuichiro [2 ]
机构
[1] Univ Elect Commun Chofu, Dept Math, Chofu, Tokyo 1828585, Japan
[2] NTT Corp, NTT Network Technol Labs, Musashino, Tokyo 1808585, Japan
关键词
generating function; differential operator; linear recurrence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a family of involutions on the space of sequences.Many arithmetically or combinatorially interesting sequences appear as eigensequences of the involutions.We develop new tools for studying sequences using these involutions.
引用
收藏
页数:29
相关论文
共 14 条
[1]   Multiple zeta values at non-positive integers [J].
Akiyama, S ;
Tanigawa, Y .
RAMANUJAN JOURNAL, 2001, 5 (04) :327-351
[2]  
Andrews G.E., 1999, ENCY MATH ITS APPL, V71
[3]   Multiple zeta values, poly-Bernoulli numbers, and related zeta functions [J].
Arakawa, T ;
Kaneko, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :189-209
[4]  
Chen K.-W., 2001, J INTEGER SEQ, V4
[5]   Identities from the binomial transform [J].
Chen, Kwang-Wu .
JOURNAL OF NUMBER THEORY, 2007, 124 (01) :142-150
[6]   Applications of the classical umbral calculus [J].
Gessel, IM .
ALGEBRA UNIVERSALIS, 2003, 49 (04) :397-434
[7]  
Graham R.L., 1994, CONCRETE MATH, Vsecond
[8]   A RECURRENCE FORMULA FOR THE BERNOULLI NUMBERS [J].
KANEKO, M .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1995, 71 (08) :192-193
[9]  
Kaneko M., 2000, J INTEGER SEQ, V3
[10]  
Stanley R.P., 1999, CAMBRIDGE STUDIES AD, V2