PRINCIPAL COMPONENT DECOMPOSITION OF NONPARAMETRIC-TESTS

被引:18
作者
JANSSEN, A
机构
[1] Mathematisches Institut, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, D-40225
关键词
D O I
10.1007/BF01375824
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let phi denote an arbitrary non-parametric unbiased test for a Gaussian shift given by an infinite dimensional parameter space. Then it is shown that the curvature of its power function has a principal component decomposition based on a Hilbert-Schmidt operator. Thus every test has reasonable curvature only for a finite number of orthogonal directions of alternatives. As application the two-sided Kolmogorov-Smirnov goodness-of-fit test is treated. We obtain lower bounds for their local asymptotic relative efficiency. They converge to one as alpha down arrow(0) for the direction h(o) (u) = sign (2u - 1) of the gradient of the median test. These results are analogous to earlier results of Hajek and Sidak for one-sided Kolmogorov-Smirnov tests.
引用
收藏
页码:193 / 209
页数:17
相关论文
共 24 条
[1]   ASYMPTOTIC THEORY OF CERTAIN GOODNESS OF FIT CRITERIA BASED ON STOCHASTIC PROCESSES [J].
ANDERSON, TW ;
DARLING, DA .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (02) :193-212
[2]  
Bouleau N., 1991, DEGRUYTER STUDIES MA, V14
[3]   COMPONENTS OF THE 2-SIDED KOLMOGOROV SMIRNOV TEST IN SIGNAL-DETECTION PROBLEMS WITH GAUSSIAN WHITE-NOISE [J].
DREES, H ;
MILBRODT, H .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1991, 29 (03) :325-335
[4]  
DURBIN J, 1972, J ROY STAT SOC B, V34, P290
[5]   QUASI-DIFFERENTIABLE FUNCTIONS ON BANACH SPACES [J].
GOODMAN, V .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 30 (02) :367-&
[6]  
GROSS L, 1967, J FUNCT ANAL, V1, P123, DOI 10.1016/0022-1236(67)90030-4
[7]  
Hajek J., 1967, THEORY RANK TESTS
[8]   ASYMPTOTICALLY NORMAL-FAMILIES OF DISTRIBUTIONS AND EFFICIENT ESTIMATION [J].
IBRAGIMOV, IA ;
KHASMINSKII, RZ .
ANNALS OF STATISTICS, 1991, 19 (04) :1681-1724
[9]  
IBRAGIMOV IA, 1981, STATISTICAL ESTIMATI
[10]  
INGLOT T, 1990, STATISTICS, V21, P549