The effect of lipid-protein interaction on the photodynamics of bacteriorhodopsin (bR) was investigated by using partially delipidated purple membrane (pm). When pm was incubated with a mild detergent, Tween 20, the two major lipid components of pm, phospholipids and glycolipids, were released in different ways: the amount of phospholipids released was proportional to the logarithm of the incubation time; the release of glycolipids became noticeable after the release of ~2 phospholipids/bR, but soon leveled off at ~50% of the initial content. It was found that the thermal decay of the photocycle intermediate N560 was inhibited by the removal of less than 2 phospholipids per bR. This inhibition was partly explained by an increase in the local pH near the membrane surface. More significant changes in the bR photoreactions were observed when >2 phospholipids/bR were removed: (1) the extent of light adaptation became much smaller, and this reduction correlated with the release of glycolipids; (2) N560 became difficult to detect; (3) the M412 intermediate, which is characterized by a pH-insensitive lifetime, was replaced by a long-lived M-like photoproduct with a pH-sensitive lifetime. The heavy delipidation apparently altered the mechanism by which the deprotonated Schiff base receives a proton. An important conformational change in the protein moiety is suggested to take place during the M412 state, this conformational change being inhibited in the rigid lipid environment. © 1990, American Chemical Society. All rights reserved.