Prolongations of Golden Structure to Tangent Bundle of Order 2

被引:0
作者
Ozkan, Mustafa [1 ]
Citlak, Ayse Asuman [1 ]
Taylan, Emel [1 ]
机构
[1] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2015年 / 28卷 / 02期
关键词
Golden structure; semi-Riemannian manifold; prolongations; tangent bundle of order two; lift; integrability;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study 2nd lift of golden structure to tangent bundle of order 2. We investigate integrability and parallelism of golden structures in T-2(M). Moreover, we define golden semi- Riemannian metric in T-2(M).
引用
收藏
页码:253 / 258
页数:6
相关论文
共 36 条
[31]   INTEGRABILITY OF POTENTIALS OF DEGREE k ≠ ±2. SECOND ORDER VARIATIONAL EQUATIONS BETWEEN KOLCHIN SOLVABILITY AND ABELIANITY [J].
Duval, Guillaume ;
Maciejewski, Andrzej J. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) :1969-2009
[32]   Various localized wave structures and dynamical analysis for a (2+1)-dimensional version of fifth-order equation [J].
Hong, Zhi-Yong ;
Wu, Juan-Juan ;
Wen, Xiao-Yong ;
Hou, Ji-Cheng .
MODERN PHYSICS LETTERS B, 2022, 36 (28N29)
[33]   Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions [J].
Yan, Zhao-Wen ;
Wang, Xiao-Li ;
Li, Min-Li .
CHINESE PHYSICS LETTERS, 2017, 34 (07)
[34]   Exact Soliton Solutions for the (2+1)-Dimensional Coupled Higher-Order Nonlinear Schroding erEquations in Birefringent Optical Fiber Communication [J].
Cai, Yue-Jin ;
Bai, Cheng-Lin ;
Luo, Qing-Long .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 67 (03) :273-279
[35]   Magnetization reversal phenomenon of higher-order lump and mixed interaction structures on periodic background in the (2+1)-dimensional Heisenberg ferromagnet spin equation [J].
Cui, Xiao-Qi ;
Wen, Xiao-Yong ;
Li, Zai-Dong .
CHAOS SOLITONS & FRACTALS, 2024, 182
[36]   On a Structure Defined by a Tensor Field f of Type (1,1) Satisfying Pi(k)(j-1) [F-2+ a(j) F+ lambda(2)(j) I]= 0 [J].
Das, Lovejoy ;
Nivas, Ram ;
Singh, Abhishek .
KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (04) :455-463