Prolongations of Golden Structure to Tangent Bundle of Order 2

被引:0
作者
Ozkan, Mustafa [1 ]
Citlak, Ayse Asuman [1 ]
Taylan, Emel [1 ]
机构
[1] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkey
来源
GAZI UNIVERSITY JOURNAL OF SCIENCE | 2015年 / 28卷 / 02期
关键词
Golden structure; semi-Riemannian manifold; prolongations; tangent bundle of order two; lift; integrability;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we study 2nd lift of golden structure to tangent bundle of order 2. We investigate integrability and parallelism of golden structures in T-2(M). Moreover, we define golden semi- Riemannian metric in T-2(M).
引用
收藏
页码:253 / 258
页数:6
相关论文
共 36 条
[21]   On the standard nondegenerate almost CR structure of tangent hyperquadric bundles [J].
Perrone, Domenico .
GEOMETRIAE DEDICATA, 2016, 185 (01) :15-33
[22]   Integrable Systems with Dissipation on the Tangent Bundles of 2- and 3-Dimensional Spheres [J].
Shamolin M.V. .
Journal of Mathematical Sciences, 2020, 245 (4) :498-507
[23]   LIFTS OF F(α, β)(3, 2,1)-STRUCTURES FROM MANIFOLDS TO TANGENT BUNDLES [J].
Khan, Mohammad Nazrul Islam .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01) :209-218
[24]   Bi-Hamiltonian structure of a third-order nonlinear evolution equation on plane curve motions [J].
Ren Wen-Xiu ;
Alatancang .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (02) :211-214
[26]   Degenerate first-order Hamiltonian operators of hydrodynamic type in 2D [J].
Savoldi, Andrea .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (26)
[27]   Structure of solvable subgroup of SL(2,C) and integrability of Fuchsian equations on torus T2 [J].
管克英 ;
张绍飞 .
Science China Mathematics, 1996, (05) :501-508
[28]   Structure of solvable subgroup of SL(2,C) and integrability of Fuchsian equations on torus T-2 [J].
Guan, KY ;
Zhang, SF .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1996, 39 (05) :501-508
[29]   Results of Symmetry Classification of 2-Field Third-Order Evolutionary Systems with a Constant Separant [J].
Balakhnev, M. Yu. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (04) :564-581
[30]   INTEGRABILITY OF HAMILTONIAN SYSTEMS WITH HOMOGENEOUS POTENTIALS OF DEGREES ±2. AN APPLICATION OF HIGHER ORDER VARIATIONAL EQUATIONS [J].
Duval, Guillaume ;
Maciejewski, Andrzej J. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) :4589-4615