RUNGE-KUTTA SMOOTHER FOR SUPPRESSION OF COMPUTATIONAL-MODE INSTABILITY OF LEAPFROG SCHEME

被引:4
作者
AOYAGI, A [1 ]
ABE, K [1 ]
机构
[1] UNIV TOKYO,COLL ARTS & SCI,MEGURO KU,TOKYO 153,JAPAN
关键词
D O I
10.1016/0021-9991(91)90183-L
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Runge-Kutta smoother is applied to suppress nonlinear numerical instabilities in the leapfrog scheme for time integration of the Korteweg-de Vries equation. The accuracy of integration is compared with that by the use of the second order smoother. The Runge-Kutta smoother enables us to make long-time integration of the Korteweg-de Vries equation for large amplitudes. © 1991.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 7 条
[1]   RECURRENCE OF INITIAL STATE OF NON-LINEAR ION WAVES [J].
ABE, K ;
SATOFUKA, N .
PHYSICS OF FLUIDS, 1981, 24 (06) :1045-1048
[2]   PARAMETRIC-EXCITATION OF COMPUTATIONAL MODES INHERENT TO LEAP-FROG SCHEME APPLIED TO THE KORTEWEG-DEVRIES EQUATION [J].
AOYAGI, A ;
ABE, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 83 (02) :447-462
[3]   FOCUSING - A MECHANISM FOR INSTABILITY OF NON-LINEAR FINITE-DIFFERENCE EQUATIONS [J].
BRIGGS, WL ;
NEWELL, AC ;
SARIE, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 51 (01) :83-106
[4]   INSTABILITY OF LEAP-FROG AND CRANK-NICOLSON APPROXIMATIONS OF A NONLINEAR PARTIAL DIFFERENTIAL EQUATION [J].
FORNBERG, B .
MATHEMATICS OF COMPUTATION, 1973, 27 (121) :45-57
[5]   ON NONLINEAR INSTABILITIES IN LEAP-FROG FINITE-DIFFERENCE SCHEMES [J].
SLOAN, DM ;
MITCHELL, AR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 67 (02) :372-395
[6]   INTERACTION OF SOLITONS IN A COLLISIONLESS PLASMA AND RECURRENCE OF INITIAL STATES [J].
ZABUSKY, NJ ;
KRUSKAL, MD .
PHYSICAL REVIEW LETTERS, 1965, 15 (06) :240-&
[7]  
ZABUSKY NJ, COMMUNICATION