LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .1. THE SYMMETRY GROUP AND ITS SUBGROUPS

被引:112
作者
GAGNON, L
WINTERNITZ, P
机构
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1988年 / 21卷 / 07期
关键词
D O I
10.1088/0305-4470/21/7/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1493 / 1511
页数:19
相关论文
共 50 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[2]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[3]  
Bluman G.W., 1974, SIMILARITY METHODS D
[4]   SYMMETRY BREAKING INTERACTIONS FOR TIME-DEPENDENT SCHRODINGER EQUATION [J].
BOYER, CP ;
SHARP, RT ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (08) :1439-1451
[5]   OPTICAL GROUP AND ITS SUBGROUPS [J].
BURDET, G ;
PATERA, J ;
PERRIN, M ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (08) :1758-1780
[6]  
BURDET G, 1978, ANN SCI MATH QUEBEC, V2, P81
[7]  
BUREAU FJ, 1972, ANN MAT PURA APPL, V41, P164
[8]  
Calogero F., 1982, SPECTRAL TRANSFORM S, V1
[9]  
CHAMPAGNE B, 1985, CRM1414 PREPR
[10]   QUASI-SOLITON AND OTHER BEHAVIOR OF THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION [J].
COWAN, S ;
ENNS, RH ;
RANGNEKAR, SS ;
SANGHERA, SS .
CANADIAN JOURNAL OF PHYSICS, 1986, 64 (03) :311-315