Glomerulus Classification and Detection Based on Convolutional Neural Networks

被引:70
作者
Gallego, Jaime [1 ]
Pedraza, Anibal [1 ]
Lopez, Samuel [1 ]
Steiner, Georg [2 ]
Gonzalez, Lucia [3 ]
Laurinavicius, Arvydas [4 ,5 ]
Bueno, Gloria [1 ]
机构
[1] Univ Castilla La Mancha, Dept Elect Engn, Ciudad Real 13071, Spain
[2] TissueGnost GmbH, A-1020 Vienna, Austria
[3] Hosp Gen Univ, Ciudad Real 13005, Spain
[4] Vilnius Univ Hosp Santariskes Clin, LT-08406 Vilnius, Lithuania
[5] Vilnius Univ, LT-08406 Vilnius, Lithuania
关键词
Glomerulus classification; Glomerulus detection; digital pathology; Convolutional Neural Networks;
D O I
10.3390/jimaging4010020
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Glomerulus classification and detection in kidney tissue segments are key processes in nephropathology used for the correct diagnosis of the diseases. In this paper, we deal with the challenge of automating Glomerulus classification and detection from digitized kidney slide segments using a deep learning framework. The proposed method applies Convolutional Neural Networks (CNNs) between two classes: Glomerulus and Non-Glomerulus, to detect the image segments belonging to Glomerulus regions. We configure the CNN with the public pre-trained AlexNet model and adapt it to our system by learning from Glomerulus and Non-Glomerulus regions extracted from training slides. Once the model is trained, labeling is performed by applying the CNN classification to the image blocks under analysis. The results of the method indicate that this technique is suitable for correct Glomerulus detection in Whole Slide Images (WSI), showing robustness while reducing false positive and false negative detections.
引用
收藏
页数:19
相关论文
共 34 条
[1]  
Agarwal S K, 2013, Indian J Nephrol, V23, P243, DOI 10.4103/0971-4065.114462
[2]  
AIDPATH (Academia and Industry for Digital Pathology), FP7612471 AIDPATH
[3]  
Boser B., 1992, P 5 ANN WORKSH COMP
[4]   New Trends of Emerging Technologies in Digital Pathology [J].
Bueno, Gloria ;
Milagro Fernandez-Carrobles, M. ;
Deniz, Oscar ;
Garcia-Rojo, Marcia .
PATHOBIOLOGY, 2016, 83 (2-3) :61-69
[5]  
Dalal N., 2005, P 2005 IEEE COMP SOC, V1
[6]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[7]  
Gadermayra M., 2016, ARXIV170800251
[8]  
Gallego J., 2017, P AN C BIOM ENG SPAN
[9]   Unsupervised labeling of glomerular boundaries using Gabor filters and statistical testing in renal histology [J].
Ginley B. ;
Tomaszewski J.E. ;
Yacoub R. ;
Chen F. ;
Sarder P. .
Journal of Medical Imaging, 2017, 4 (02)
[10]  
Graham R. L., 1972, Information Processing Letters, V1, P132, DOI 10.1016/0020-0190(72)90045-2