Advanced adaptive correction of turbulent distortions based on a Shack-Hartmann wavefront sensor measurements

被引:5
作者
L. B. Antoshkin
V. V. Lavrinov
L. N. Lavrinova
机构
[1] Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk 634021
关键词
centroid coordinates; differential method; frozen turbulence time; prediction; random phase screen; transverse wind speed; wavefront sensor;
D O I
10.3103/S8756699012020124
中图分类号
学科分类号
摘要
The propagation of laser radiation through the atmosphere is accompanied by a change in the light field under the influence of turbulence and is a random process. An adaptive system that includes a Shack-Hartmann wavefront sensor and a flexible mirror corrects distortions found at the previous time but changed before being corrected by the system. Analysis of turbulence within a given time period allows one to predict turbulent distortions at the subsequent time and use it to make a correction in the radiation phase distribution. The adaptive correction performance can also be improved by preparing the reflective surface of the adaptive mirror based on predictions of the state of the wavefront at the next time by the turbulence parameters and the transverse component of the wind speed found in previous Hartmann-Shack sensor measurements. © 2012 Allerton Press, Inc.
引用
收藏
页码:188 / 196
页数:8
相关论文
共 50 条
[41]   Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements [J].
Li, Zhenghan ;
Li, Xinyang .
OPTICS EXPRESS, 2018, 26 (09) :11859-11876
[42]   Centroid gain compensation in a Shack-Hartmann adaptive optics system:: implementation issues [J].
Véran, JP ;
Herriot, G .
ADAPTIVE OPTICAL SYSTEMS TECHNOLOGY, PTS 1 AND 2, 2000, 4007 :642-648
[43]   Wavefront Sensor For Spatial Scan using the Hartmann-Shack Method [J].
Souza, Carlos Felipe G. ;
Cordeiro, Henrique A. ;
de Lima Monteiro, Davies W. ;
Crespo, Telson Emmanuel O. ;
Abecassis, Ursula V. ;
Salles, Luciana P. .
2016 1ST SYMPOSIUM ON INSTRUMENTATION SYSTEMS, CIRCUITS AND TRANSDUCERS (INSCIT), 2016, :31-36
[44]   CHOUGH: spatially filtered Shack-Hartmann wave-front sensor for HOAO [J].
Holck, Daniel ;
Bharmal, Nazim Ali ;
Dubbeldam, Cornelis M. ;
Myers, Richard M. .
ADAPTIVE OPTICS SYSTEMS V, 2016, 9909
[45]   Wavefront measurement error in a Hartmann-Shack-type wavefront sensor due to field anisoplanatism [J].
Woeger, Friedrich ;
Rimmele, Thomas .
ADAPTIVE OPTICS SYSTEMS, PTS 1-3, 2008, 7015
[46]   Automatic Compressive Sensing of Shack-Hartmann Sensors Based on the Vision Transformer [J].
Zhang, Qingyang ;
Zuo, Heng ;
Cui, Xiangqun ;
Yuan, Xiangyan ;
Hu, Tianzhu .
PHOTONICS, 2024, 11 (11)
[47]   Performance analysis of field-of-view shifted Shack–Hartmann wavefront sensor based on splitter [J].
Chaohong Li ;
Hao Xian ;
Wenhan Jiang ;
Changhui Rao .
Applied Physics B, 2007, 88 :367-372
[48]   Optimized microlens-array geometry for Hartmann-Shack wavefront sensor [J].
Oliveira, O. G. ;
de Lima Monteiro, D. W. ;
Costa, R. F. O. .
OPTICS AND LASERS IN ENGINEERING, 2014, 55 :155-161
[49]   Characterization of a Parallel Aligned Liquid Crystal on Silicon and its application on a Shack-Hartmann sensor [J].
Lobato, L. ;
Marquez, A. ;
Lizana, A. ;
Moreno, I. ;
Iemmi, C. ;
Campos, J. .
OPTICS AND PHOTONICS FOR INFORMATION PROCESSING IV, 2010, 7797
[50]   Measurement of lens focal length using multi-curvature analysis of Shack-Hartmann wavefront data [J].
Neal, DR ;
Copland, J ;
Neal, DA ;
Topa, DM ;
Riera, P .
CURRENT DEVELOPMENTS IN LENS DESIGN AND OPTICAL ENGINEERING V, 2004, 5523 :243-255