Advanced adaptive correction of turbulent distortions based on a Shack-Hartmann wavefront sensor measurements

被引:5
作者
L. B. Antoshkin
V. V. Lavrinov
L. N. Lavrinova
机构
[1] Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk 634021
关键词
centroid coordinates; differential method; frozen turbulence time; prediction; random phase screen; transverse wind speed; wavefront sensor;
D O I
10.3103/S8756699012020124
中图分类号
学科分类号
摘要
The propagation of laser radiation through the atmosphere is accompanied by a change in the light field under the influence of turbulence and is a random process. An adaptive system that includes a Shack-Hartmann wavefront sensor and a flexible mirror corrects distortions found at the previous time but changed before being corrected by the system. Analysis of turbulence within a given time period allows one to predict turbulent distortions at the subsequent time and use it to make a correction in the radiation phase distribution. The adaptive correction performance can also be improved by preparing the reflective surface of the adaptive mirror based on predictions of the state of the wavefront at the next time by the turbulence parameters and the transverse component of the wind speed found in previous Hartmann-Shack sensor measurements. © 2012 Allerton Press, Inc.
引用
收藏
页码:188 / 196
页数:8
相关论文
共 50 条
[21]   Wavefront reconstruction based on the results of light-field conversion by a Shack-Hartmann sensor [J].
Lavrinov V.V. ;
Lavrinova L.N. ;
Tuev M.V. .
Lavrinov, V. V. (lnl@iao.ru), 1600, Allerton Press Incorporation (49) :305-312
[22]   EMCCD in-situ periodic characterization in Shack-Hartmann wavefront sensor for GTCAO [J].
Tubio Araujo, Oscar ;
Nunez Cagigal, Miguel ;
Wenzel Arguelles, Ruben Thor ;
Lopez Lopez, Roberto ;
Luis Simoes, Roberto ;
Marco de la Rosa, Jose ;
Montilla, Iciar ;
Patron Recio, Jesus ;
Puga Antolin, Marta ;
Reyes Garcia-Talavera, Marcos ;
Rodriguez Ramos, Luis Fernando ;
Rosich Minguell, Josefina ;
Bejar, Victor J. S. ;
Basden, Alastair .
ADAPTIVE OPTICS SYSTEMS VI, 2018, 10703
[23]   Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks [J].
Li, Ziqiang ;
Li, Xinyang .
OPTICS EXPRESS, 2018, 26 (24) :31675-31692
[24]   Analysis of correlation algorithms for Shack-Hartmann wavefront sensors [J].
Xiong, Zhaojun ;
Chen, Shanqiu ;
Dong, Lizhi ;
Yang, Ping ;
Xu, Bing ;
Zhao, Wang ;
Yu, Xin ;
Yang, Kangjian ;
Wang, Xun ;
He, Xing .
9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: LARGE MIRRORS AND TELESCOPES, 2018, 10837
[25]   Comparison of the plenoptic sensor and the Shack-Hartmann sensor [J].
Ko, Jonathan ;
Davis, Christopher C. .
APPLIED OPTICS, 2017, 56 (13) :3689-3698
[26]   Improving Shack-Hartmann Wavefront Sensor by using Sub-wavelength Annular Apertures [J].
Chang, Hao-Jung ;
Chung, Ming-Han ;
Lee, Chih-Kung .
OPTICAL COMPONENTS AND MATERIALS XI, 2014, 8982
[27]   Shack-Hartmann wavefront sensing measurements of near-ground propagated laser beams [J].
Barbier, PR ;
PolakDingels, P ;
Rush, DW ;
Burdge, GL ;
Levine, BM ;
Martinsen, EA ;
Wirth, A ;
Jankevics, A .
PROPAGATION AND IMAGING THROUGH THE ATMOSPHERE, 1997, 3125 :284-295
[28]   Scanning Shack-Hartmann wave front sensor [J].
Molebny, V .
LASER RADAR TECHNOLOGY AND APPLICATIONS IX, 2004, 5412 :66-71
[29]   Frozen-flow atmosphere wind velocity estimation using a Shack-Hartmann wavefront sensor [J].
Ren, Zhilei ;
Chen, Zhitao ;
Liu, Jin ;
Liang, Yonghui .
SIXTH SYMPOSIUM ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2020, 11455
[30]   Application of Shack-Hartmann wavefront sensing technology to transmissive optic metrology [J].
Rammage, RR ;
Neal, DR ;
Copland, RJ .
ADVANCED CHARACTERIZATION TECHNIQUES FOR OPTICAL, SEMICONDUCTOR, AND DATA STORAGE COMPONENTS, 2002, 4779 :161-172