Read and Write Analysis for Balanced Pattern Memristor Crossbar Array

被引:0
作者
Sharma, Arun Kant [1 ]
Asapu, Shiva [1 ]
Salimath, Akshaykumar [1 ]
Ghosh, Bahniman [1 ,2 ]
机构
[1] Indian Inst Technol Kanpur, Dept Elect Engn, Kanpur 208016, Uttar Pradesh, India
[2] Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA
关键词
Memristor; Balanced Crossbar Array;
D O I
10.1166/jolpe.2014.1298
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we try to access all possible memory combinations in a memristor crossbar array, reduce the effect of sneak path currents and also make read faster and simpler. For this, we analyze a balanced pattern architecture using a memristive crossbar array and also propose an effective read technique. We aim at reducing the problem of variability in the sneak path currents. Also from the read technique proposed, we reduce the measurements to read memory from the array.
引用
收藏
页码:84 / 87
页数:4
相关论文
共 17 条
  • [1] Abdalla H, 2011, IEEE INT SYMP CIRC S, P1832, DOI 10.1109/ISCAS.2011.5937942
  • [2] A Memristor SPICE Implementation and a New Approach for Magnetic Flux-Controlled Memristor Modeling
    Batas, Daniel
    Fiedler, Horst
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2011, 10 (02) : 250 - 255
  • [3] MEMRISTOR - MISSING CIRCUIT ELEMENT
    CHUA, LO
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05): : 507 - +
  • [4] TEAM: ThrEshold Adaptive Memristor Model
    Kvatinsky, Shahar
    Friedman, Eby G.
    Kolodny, Avinoam
    Weiser, Uri C.
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (01) : 211 - 221
  • [5] Laihon M., 2010, 2010 12 INT WORKSH C, P1
  • [6] Stateful Implication Logic with Memristors
    Lehtonen, Eero
    Laiho, Mika
    [J]. 2009 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES, 2009, : 33 - 36
  • [7] Linn E, 2010, NAT MATER, V9, P403, DOI [10.1038/nmat2748, 10.1038/NMAT2748]
  • [8] Manem H, 2011, IEEE INT SYMP CIRC S, P2938
  • [9] Pershin Y. V., ARXIV12042600
  • [10] Querlioz D, 2011, 2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), P1775, DOI 10.1109/IJCNN.2011.6033439