OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY

被引:392
|
作者
CARROLL, RJ [1 ]
HALL, P [1 ]
机构
[1] AUSTRALIAN NATL UNIV,DEPT STAT,CANBERRA,ACT 2601,AUSTRALIA
关键词
D O I
10.2307/2290153
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1184 / 1186
页数:3
相关论文
共 50 条
  • [31] Finite sample performance of deconvolving density estimators
    Wand, MP
    STATISTICS & PROBABILITY LETTERS, 1998, 37 (02) : 131 - 139
  • [32] Optimal rates of convergence for estimating Toeplitz covariance matrices
    T. Tony Cai
    Zhao Ren
    Harrison H. Zhou
    Probability Theory and Related Fields, 2013, 156 : 101 - 143
  • [33] Optimal convergence rates for some discrete projection methods
    Golberg, M
    Bowman, H
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 96 (2-3) : 237 - 271
  • [34] Optimal rates of convergence for estimates of the extreme value index
    Drees, H
    ANNALS OF STATISTICS, 1998, 26 (01): : 434 - 448
  • [35] OPTIMAL CONVERGENCE RATES FOR TIKHONOV REGULARIZATION IN BESOV SPACES
    Weidling, Frederic
    Sprung, Benjamin
    Hohage, Thorsten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 21 - 47
  • [36] CONVERGENCE-RATES FOR THE OPTIMAL VALUES OF ALLOCATION PROCESSES
    ARTSTEIN, Z
    MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (03) : 348 - 355
  • [37] Optimal convergence rates for Tikhonov regularization in Besov scales
    Lorenz, D. A.
    Trede, D.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (01): : 69 - 76
  • [38] Adaptive BEM with optimal convergence rates for the Helmholtz equation
    Bespalov, Alex
    Betcke, Timo
    Haberl, Alexander
    Praetorius, Dirk
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 260 - 287
  • [39] OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION
    Cai, T. Tony
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2012, 40 (05): : 2389 - 2420
  • [40] Optimal rates of convergence and error localization of Gegenbauer projections
    Wang, Haiyong
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) : 2413 - 2444