COMPUTING TURNING-POINTS OF CURVES IMPLICITLY DEFINED BY NON-LINEAR EQUATIONS DEPENDING ON A PARAMETER

被引:42
作者
PONISCH, G [1 ]
SCHWETLICK, H [1 ]
机构
[1] MARTIN LUTHER UNIV,SEKT MATH,DDR-401 HALLE,GER DEM REP
关键词
D O I
10.1007/BF02241778
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:107 / 121
页数:15
相关论文
共 17 条
[1]  
Abbott J.P., 1978, J COMPUT APPL MATH, V4, P19
[2]  
ABBOTT JP, 1977, THESIS AUSTR NATIONA
[3]   AN EXTENSION OF NEWTON-KANTOROVIC METHOD FOR SOLVING NONLINEAR EQUATIONS WITH AN APPLICATION TO ELASTICITY [J].
ANSELONE, PM ;
MOORE, RH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 13 (03) :476-&
[4]  
Chua L. O., 1976, International Journal of Circuit Theory and Applications, V4, P215, DOI 10.1002/cta.4490040302
[5]   SOLUTION OF NON-LINEAR EQUATIONS AND OF DIFFERENTIAL-EQUATIONS WITH 2-POINT BOUNDARY-CONDITIONS [J].
HASELGROVE, CB .
COMPUTER JOURNAL, 1961, 4 :255-&
[6]  
Kubicek M., 1976, ACM T MATH SOFTWARE, V2, P98, DOI DOI 10.1145/355666.355675
[7]  
KUBICEK M, 1975, APPL MATH COMPUT, V1, P341
[8]   SOLVING NON-LINEAR EQUATIONS DEPENDING ON A REAL PARAMETER IN CASE OF SINGULAR JACOBIANS [J].
MENZEL, R ;
SCHWETLICK, H .
NUMERISCHE MATHEMATIK, 1978, 30 (01) :65-79
[9]  
Ortega J.M., 1970, ITERATIVE SOLUTION N
[10]  
PONISCH G, 1980, BEITRAGE NUMER MATH, V9