ON MINIMUM MAXIMAL INDEPENDENT SETS OF A GRAPH

被引:15
作者
HAVILAND, J
机构
关键词
D O I
10.1016/0012-365X(91)90318-V
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple graph G, the independent domination number i(G) is defined to be the minimum cardinality among all maximal independent sets of vertices of G. If G has order n and minimum degree delta less-than-or-equal-to n/2, we give upper bounds for i(G) as functions of n and delta, and over part of the range achieve best possible results. In particular, we extend work of Favaron (1988).
引用
收藏
页码:95 / 101
页数:7
相关论文
共 7 条
[1]   GRAPH-THEORETIC PARAMETERS CONCERNING DOMINATION, INDEPENDENCE, AND IRREDUNDANCE [J].
BOLLOBAS, B ;
COCKAYNE, EJ .
JOURNAL OF GRAPH THEORY, 1979, 3 (03) :241-249
[2]   CONTRIBUTIONS TO THE THEORY OF DOMINATION, INDEPENDENCE AND IRREDUNDANCE IN GRAPHS [J].
COCKAYNE, EJ ;
FAVARON, O ;
PAYAN, C ;
THOMASON, AG .
DISCRETE MATHEMATICS, 1981, 33 (03) :249-258
[3]  
COCKAYNE EJ, 1974, 5TH P SE C COMB GRAP, P471
[4]  
COCKAYNE EJ, 1979, DSCRETE MATH, V26, P243
[5]   2 RELATIONS BETWEEN THE PARAMETERS OF INDEPENDENCE AND IRREDUNDANCE [J].
FAVARON, O .
DISCRETE MATHEMATICS, 1988, 70 (01) :17-20
[6]  
HAVILAND J, 1989, THESIS U CAMBRIDGE
[7]  
WANG CD, 1985, J MATH, V5, P201