AN IMPROVED MONOTONE CONDITIONAL QUANTILE ESTIMATOR

被引:4
作者
MUKERJEE, H
机构
关键词
MONOTONE CONDITIONAL QUANTILES; BAHADUR REPRESENTATION;
D O I
10.1214/aos/1176349158
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that (X1,Y1),...,(X(n),Y(n)) are i.i.d. bivariate random vectors and that xi(p)(x) is the p-quantile of Y1 given X1 = x for 0 < p < 1. Estimation of xi(p)(x), when it is monotone in x, has been studied in the literature. In the nonparametric conditional quantile estimation one uses only some smoothness assumptions. The asymptotic properties are superior in the latter case; however, monotonicity is not guaranteed. We introduce a new estimator that enjoys both of the above properties.
引用
收藏
页码:924 / 942
页数:19
相关论文
共 15 条
[1]   KERNEL AND NEAREST-NEIGHBOR ESTIMATION OF A CONDITIONAL QUANTILE [J].
BHATTACHARYA, PK ;
GANGOPADHYAY, AK .
ANNALS OF STATISTICS, 1990, 18 (03) :1400-1415
[2]   MONOTONE PERCENTILE REGRESSION [J].
CASADY, RJ ;
CRYER, JD .
ANNALS OF STATISTICS, 1976, 4 (03) :532-541
[4]   MONOTONE MEDIAN REGRESSION [J].
CRYER, JD ;
WRIGHT, FT ;
CASADY, RJ ;
ROBERTSO.T .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (05) :1459-&
[5]   A LAW OF THE ITERATED LOGARITHM FOR NONPARAMETRIC REGRESSION FUNCTION ESTIMATORS [J].
HARDLE, W .
ANNALS OF STATISTICS, 1984, 12 (02) :624-635
[7]   MONOTONE NONPARAMETRIC REGRESSION [J].
MUKERJEE, H .
ANNALS OF STATISTICS, 1988, 16 (02) :741-750
[8]  
PARSONS VL, 1979, UNPUB LTD DISTRIBUTI
[9]   MAXIMUM LIKELIHOOD ESTIMATION OF STOCHASTICALLY ORDERED RANDOM VARIATES [J].
ROBERTSON, T ;
WRIGHT, FT .
ANNALS OF STATISTICS, 1974, 2 (03) :528-534
[10]   ON ESTIMATING MONOTONE PARAMETERS [J].
ROBERTSON, T ;
WALTMAN, P .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (03) :1030-+