Some new integral inequalities of Hermite-Hadamard type for (log, (alpha, m))-convex functions on co-ordinates

被引:0
作者
Xi, Bo-Yan [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Sch Sci, Dept Math, Tianjin 300387, Peoples R China
[3] Henan Polytech Univ, Inst Math, Jiaozuo City 454010, Henan, Peoples R China
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2015年 / 60卷 / 04期
基金
中国国家自然科学基金;
关键词
Co-ordinates; (log; (alpha; m))-convex functions on co-ordinates; Hermite-Hadamard's inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors introduce a new concept "(log, (alpha, m))-convex functions on the co-ordinates on the rectangle of the plane" and establish some new integral inequalities of Hermite-Hadamard type for (log, (alpha,m))-convex functions on the co-ordinates on the rectangle from the plane.
引用
收藏
页码:509 / 525
页数:17
相关论文
共 50 条
[41]   SOME QUANTUM ESTIMATES OF HERMITE-HADAMARD INEQUALITIES FOR CONVEX FUNCTIONS [J].
Liu, Wenjun ;
Zhuang, Hefeng .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02) :501-522
[42]   Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates [J].
Mohammed, P. O. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :258-262
[43]   ON INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR COORDINATED r-MEAN CONVEX FUNCTIONS [J].
Gao, Dan-Dan ;
Xi, Bo-Yan ;
Wu, Ying ;
Guo, Bai-Ni .
MISKOLC MATHEMATICAL NOTES, 2019, 20 (02) :873-885
[44]   Several integral inequalities of the Hermite-Hadamard type for s-(?, F)-convex functions [J].
Wang, Yan ;
Liu, Xi -Min ;
Guo, Bai-Ni .
SCIENCEASIA, 2023, 49 (02) :200-204
[45]   Hermite-Hadamard's type inequalities for operator convex functions [J].
Dragomir, S. S. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :766-772
[46]   Some Hermite-Hadamard type inequalities for functions whose n-th derivatives are (α, m)-convex [J].
Li, Wen-Hui ;
Qi, Feng .
FILOMAT, 2013, 27 (08) :1575-1582
[47]   On some Hermite-Hadamard-type integral inequalities for co-ordinated (alpha, QC)- and (alpha, CJ)-convex functions [J].
Xi, Bo-Yan ;
Sung, Jian ;
Bai, Shu-Ping .
TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) :75-86
[48]   Some Generalizations of Hermite-Hadamard Type Integral Inequalities and their Applications [J].
Muddassar, Muhammad ;
Bhatti, Muhammad I. .
PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2014, 46 (01) :9-18
[49]   HERMITE-HADAMARD TYPE INEQUALITIES FOR m-CONVEX AND (α, m)-CONVEX STOCHASTIC PROCESSES [J].
Ozcan, Serap .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (05) :793-802
[50]   HERMITE-HADAMARD TYPE INEQUALITIES FOR GEOMETRICALLY r-CONVEX FUNCTIONS [J].
Xi, Bo-Yan ;
Qi, Feng .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2014, 51 (04) :530-546