Some new integral inequalities of Hermite-Hadamard type for (log, (alpha, m))-convex functions on co-ordinates

被引:0
作者
Xi, Bo-Yan [1 ]
Qi, Feng [2 ,3 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao City 028043, Inner Mongolia, Peoples R China
[2] Tianjin Polytech Univ, Sch Sci, Dept Math, Tianjin 300387, Peoples R China
[3] Henan Polytech Univ, Inst Math, Jiaozuo City 454010, Henan, Peoples R China
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2015年 / 60卷 / 04期
基金
中国国家自然科学基金;
关键词
Co-ordinates; (log; (alpha; m))-convex functions on co-ordinates; Hermite-Hadamard's inequality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors introduce a new concept "(log, (alpha, m))-convex functions on the co-ordinates on the rectangle of the plane" and establish some new integral inequalities of Hermite-Hadamard type for (log, (alpha,m))-convex functions on the co-ordinates on the rectangle from the plane.
引用
收藏
页码:509 / 525
页数:17
相关论文
共 50 条
[31]   Integral inequalities of Hermite-Hadamard type for GA-F-convex functions [J].
Shuang, Ye ;
Qi, Feng .
AIMS MATHEMATICS, 2021, 6 (09) :9582-9589
[32]   On Hermite-Hadamard Type Integral Inequalities for n-times Differentiable m- and (α, m)-Logarithmically Convex Functions [J].
Latif, M. A. ;
Dragomir, S. S. ;
Momoniat, E. .
FILOMAT, 2016, 30 (11) :3101-3114
[33]   Some Hermite-Hadamard type inequalities for n-time differentiable (α, m)-convex functions [J].
Bai, Shu-Ping ;
Wang, Shu-Hong ;
Qi, Feng .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[34]   Integral inequalities of Hermite-Hadamard type for the product of strongly logarithmically convex and other convex functions [J].
Wu, Ying ;
Qi, Feng ;
Niu, Da-Wei .
MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2015, 9 (03) :394-402
[35]   INEQUALITIES OF HERMITE-HADAMARD TYPE FOR EXTENDED HARMONICALLY (s, m)-CONVEX FUNCTIONS [J].
He, Chun-Ying ;
Xi, Bo-Yan ;
Guo, Bai-Ni .
MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) :245-258
[36]   Integral inequalities of Hermite-Hadamard type for functions whose 3rd derivatives are (α, m)-convex [J].
Chun, Ling .
INFORMATION TECHNOLOGY AND COMPUTER APPLICATION ENGINEERING, 2014, :535-537
[37]   Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of the mixed derivatives are co-ordinated (log,(α,m))-preinvex [J].
Ghomrani, S. ;
Meftah, B. ;
Kaidouchi, W. ;
Benssaad, M. .
AFRIKA MATEMATIKA, 2021, 32 (5-6) :925-940
[38]   Some Hermite-Hadamard type inequalities for geometrically quasi-convex functions [J].
Qi, Feng ;
Xi, Bo-Yan .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (03) :333-342
[39]   Hermite-Hadamard type inequalities for (α, m)-HA and strongly (α, m)-HA convex functions [J].
He, Chun-Ying ;
Wang, Yan ;
Xi, Bo-Yan ;
Qi, Feng .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (01) :205-214
[40]   Fractional Hermite-Hadamard inequalities for (α, m)-logarithmically convex functions [J].
Deng, Jianhua ;
Wang, JinRong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,