On the classification of Kahler-Ricci solitons on Gorenstein del Pezzo surfaces

被引:6
作者
Cable, Jacob [1 ]
Suss, Hendrik [1 ]
机构
[1] Univ Manchester, Fac Sci & Engn, Sch Math, Alan Turing Bldg,Oxford Rd, Manchester M13 9PL, Lancs, England
关键词
K-Stability; Kahler-Ricci solitons; T-Variety; Torus action; Fano variety;
D O I
10.1007/s40879-017-0204-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a classification of all pairs (X, xi) of Gorenstein del Pezzo surfaces X and vector fields xi which are K-stable in the sense of Berman-Witt-Nystrom and therefore are expected to admit a Kahler-Ricci solition. Moreover, we provide some new examples of Fano threefolds admitting a Kahler-Ricci soliton.
引用
收藏
页码:137 / 161
页数:25
相关论文
共 19 条
[1]  
Altmann K, 2012, EMS SER CONGR REP, P17
[2]   EXPONENTIAL-SUMS AND INTEGRALS OVER CONVEX POLYTOPES [J].
BARVINOK, AI .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1992, 26 (02) :127-129
[3]  
Berman, 2014, ARXIV14018264
[4]  
Cable J, 2017, CLASSIFICATION KAHLE, DOI [10.5281/zenodo.572021, DOI 10.5281/ZENODO.572021]
[5]   Kahler-Einstein metrics along the smooth continuity method [J].
Datar, Ved ;
Szekelyhidi, Gabor .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (04) :975-1010
[6]  
Donaldson S.K., 2008, HDB GEOMETRIC ANAL, V7, P29
[7]  
Hartshorne R., 1977, ALGEBRAIC GEOM
[8]   COX RINGS AND COMBINATORICS II [J].
Hausen, Juergen .
MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (04) :711-757
[9]  
Ilten N, 2017, ARXIV171004146
[10]   K-STABILITY FOR FANO MANIFOLDS WITH TORUS ACTION OF COMPLEXITY 1 [J].
Ilten, Nathan ;
Suss, Hendrik .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (01) :177-204