COOPERATIVE SYSTEMS-THEORY AND GLOBAL STABILITY OF DIFFUSION-MODELS

被引:44
作者
TAKEUCHI, Y
机构
关键词
D O I
10.1007/BF00046673
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:49 / 57
页数:9
相关论文
共 10 条
[2]   GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY [J].
BERETTA, E ;
TAKEUCHI, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :627-651
[3]   GLOBAL STABILITY OF SINGLE-SPECIES DIFFUSION VOLTERRA MODELS WITH CONTINUOUS-TIME DELAYS [J].
BERETTA, E ;
TAKEUCHI, Y .
BULLETIN OF MATHEMATICAL BIOLOGY, 1987, 49 (04) :431-448
[4]   MATHEMATICAL-MODELS OF POPULATION INTERACTIONS WITH DISPERSAL .2. DIFFERENTIAL SURVIVAL IN A CHANGE OF HABITAT [J].
FREEDMAN, HI ;
RAI, B ;
WALTMAN, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 115 (01) :140-154
[5]   QUASIMONOTONE SYSTEMS AND CONVERGENCE TO EQUILIBRIUM IN A POPULATION GENETIC MODEL [J].
HADELER, KP ;
GLAS, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 95 (02) :297-303
[8]   On theories of common differential equation system. II [J].
Kamkf, E .
ACTA MATHEMATICA, 1932, 58 (01) :57-85
[9]  
Nikaido H., 1968, CONVEX STRUCTURE EC
[10]   ON THE ASYMPTOTIC-BEHAVIOR OF A CLASS OF DETERMINISTIC MODELS OF COOPERATING SPECIES [J].
SMITH, HL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (03) :368-375