Chebyshev Distance

被引:25
作者
Coghetto, Roland [1 ]
机构
[1] Rue Brasserie 5, B-7100 La Louviere, Belgium
关键词
second-countable; intervals; Chebyshev distance;
D O I
10.1515/forma-2016-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [21], Marco Riccardi formalized that RN-basis n is a basis (in the algebraic sense defined in [26]) of epsilon(n)(T) and in [20] he has formalized that epsilon(n)(T) is second-countable, we build (in the topological sense defined in [23]) a denumerable base of epsilon(n)(T). Then we introduce the n-dimensional intervals (interval in n-dimensional Euclidean space, pave (borne) de R-n [16], semi-intervalle (borne) de R-n [22]). We conclude with the definition of Chebyshev distance [11].
引用
收藏
页码:121 / 141
页数:21
相关论文
共 27 条
[1]  
Alexander Yu, 1996, FORMALIZED MATH, V5, P233
[2]  
Bancerek G., 1990, FORMALIZED MATH, V1, P107
[3]  
Bancerek G., 1990, FORMALIZED MATH, V1, P41
[4]  
BANCEREK G, 1990, FORMALIZ MATH, V1, P589
[5]  
Bancerek Grzegorz, 1992, FORMALIZED MATH, V3, P89
[6]  
Bylinski C., 1990, FORMALIZED MATH, V1, P55
[7]  
Bylinski Czeslaw, 1990, FORMALIZED MATH, V1, P507
[8]  
Bylinski Czeslaw, 1990, FORMALIZED MATH, V1, P529
[9]  
Bylinski Czeslaw, 1990, FORMALIZED MATH, V1, P47
[10]  
Bylinski Czeslaw, 1990, FORMALIZED MATH, V1, P661