BLENDING METHODS FOR 2 CLASSICAL INTEGRALS

被引:4
作者
GODZINA, G
机构
[1] Mathematisches Institut, Friedrich-Alexander-Universität Erlangen-Nümberg, Erlangen, D-91054
关键词
CUBATURE; QUADRATURE; PRODUCT INTEGRALS; TSCHEBYCHEFF WEIGHTS;
D O I
10.1007/BF02253617
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Blending Methods for Two Classical Integrals. A construction method for cubature formulae of an arbitrary degree for d-dimensional product-integrals, d greater than or equal to 2, will be presented. To get a high degree of exactness with a moderate number of nodes quadrature rules are blended in a suitable way. For product-integrals with Tschebycheff-weight-functions the corresponding cubature formulae are minimal or 'minimal + 1' in the case d = 2. In higher dimensions the number of nodes of the constructed formulae is far beyond the number of nodes of other approaches known.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 20 条
[1]  
ABRAMOWITZ M, 1964, HANDB MATH, P782
[2]  
BERENS H, UNPUB MULTIVARIATE G
[3]   ANOTHER STEP FORWARD IN SEARCHING FOR CUBATURE FORMULAS WITH A MINIMAL NUMBER OF KNOTS FOR THE SQUARE [J].
COOLS, R ;
HAEGEMANS, A .
COMPUTING, 1988, 40 (02) :139-146
[4]   MONOMIAL CUBATURE RULES SINCE STROUD - A COMPILATION [J].
COOLS, R ;
RABINOWITZ, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 48 (03) :309-326
[5]  
COOLS R, 1988, NUMERICAL INTEGRATIO, V3, P25
[6]  
COOLS R, 1989, THESIS KATH U LEUVEN
[7]  
COOLS R, 1993, NUMERICAL INTEGRATIO, V4, P57
[8]  
GODZINA G, 1994, THESIS U ERLANGEN NU
[9]   MINIMUM-POINT CUBATURE FORMULAS [J].
MOLLER, HM .
NUMERISCHE MATHEMATIK, 1976, 25 (02) :185-200
[10]  
MOLLER HM, 1973, THESIS U DORTMUND