INVERSIONS OF HERMITE SEMIGROUP

被引:15
作者
BYUN, DW [1 ]
机构
[1] GUNMA UNIV,FAC ENGN,DEPT MATH,KIRYU,GUNMA 376,JAPAN
关键词
ANALYTIC EXTENSION; ENTIRE FUNCTION; HERMITE POLYNOMIAL; HERMITE SEMIGROUP; INVERSE OF OPERATOR; POSITIVE MATRIX; REPRODUCING KERNEL HILBERT SPACE;
D O I
10.2307/2160320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {e(-cH)\c greater-than-or-equal-to 0} be the Hermite semigroup on the real line R. Then a representation is constructed for inversions of the semigroup, and it gives a representation of e(-cH) for c < 0. Moreover, some characterizations of the domain in which, for c < 0, e(-cH) is well defined are examined.
引用
收藏
页码:437 / 445
页数:9
相关论文
共 10 条
[1]  
ANDO T, 1991, KOUKKYU ROKU, V743, P164
[2]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[4]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[5]  
HAYASHI N, 1990, ANN I H POINCARE-PHY, V52, P163
[6]  
Nelson Edward, 1973, J FUNCT ANAL, V12, P211
[8]   INTEGRAL-TRANSFORMS IN HILBERT-SPACES [J].
SAITOH, S .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1982, 58 (08) :361-364
[9]  
Saitoh S., 1988, PITMAN RES NOTES MAT, V189
[10]   2-POINT INEQUALITIES, THE HERMITE SEMIGROUP, AND THE GAUSS-WEIERSTRASS SEMIGROUP [J].
WEISSLER, FB .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :102-121