MINIMIZATION, CONSTRAINTS AND COMPOSITE BEZIER CURVES

被引:9
作者
BERCOVIER, M
JACOBI, A
机构
关键词
BEZIER CURVE; OFFSET CURVE; APPROXIMATE CONVERSION; GEOMETRIC CONTINUITY; VARIATIONAL PROBLEM FORMULATION; FINITE ELEMENT METHOD (FEM); LAGRANGE MULTIPLIERS FORMULATION; AUGMENTED LAGRANGIAN FORMULATION; PENALTY METHOD; UZAWA METHOD;
D O I
10.1016/0167-8396(94)90303-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a global method for approximation and/or construction of curves using constraints. The method is based on a min-max problem which describes approximation and differential geometric characteristics, constrained in order to achieve desired geometrical or physical effects. The numerical solution of the problem takes full advantage of the finite elements method and of constrained optimization algorithms.
引用
收藏
页码:533 / 563
页数:31
相关论文
共 32 条
[11]  
GREGORY JA, 1989, MATH METHODS COMPUTE, P253
[12]   KNOT PLACEMENT FOR PIECEWISE POLYNOMIAL-APPROXIMATION OF CURVES [J].
HOLZLE, GE .
COMPUTER-AIDED DESIGN, 1983, 15 (05) :295-296
[13]  
Hoschek J., 1987, Computer-Aided Geometric Design, V4, P59, DOI 10.1016/0167-8396(87)90024-0
[14]   INTRINSIC PARAMETERIZATION FOR APPROXIMATION. [J].
Hoschek, J. .
Computer Aided Geometric Design, 1988, 5 (01) :27-31
[15]   SPLINE APPROXIMATION OF OFFSET CURVES. [J].
Hoschek, Josef .
Computer Aided Geometric Design, 1988, 5 (01) :33-40
[16]   OFFSET CURVES IN THE PLANE [J].
HOSCHEK, J .
COMPUTER-AIDED DESIGN, 1985, 17 (02) :77-82
[17]  
HOSCHEK J, 1988, COMPUT AIDED DESIGN, V20, P457
[18]  
Lachance M. A., 1988, Computer-Aided Geometric Design, V5, P195, DOI 10.1016/0167-8396(88)90003-9
[19]  
Landau L. D., 1959, MECHANICS, V3rd
[20]   CHOOSING NODES IN PARAMETRIC CURVE INTERPOLATION [J].
LEE, ETY .
COMPUTER-AIDED DESIGN, 1989, 21 (06) :363-370