MINIMIZATION, CONSTRAINTS AND COMPOSITE BEZIER CURVES

被引:9
作者
BERCOVIER, M
JACOBI, A
机构
关键词
BEZIER CURVE; OFFSET CURVE; APPROXIMATE CONVERSION; GEOMETRIC CONTINUITY; VARIATIONAL PROBLEM FORMULATION; FINITE ELEMENT METHOD (FEM); LAGRANGE MULTIPLIERS FORMULATION; AUGMENTED LAGRANGIAN FORMULATION; PENALTY METHOD; UZAWA METHOD;
D O I
10.1016/0167-8396(94)90303-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a global method for approximation and/or construction of curves using constraints. The method is based on a min-max problem which describes approximation and differential geometric characteristics, constrained in order to achieve desired geometrical or physical effects. The numerical solution of the problem takes full advantage of the finite elements method and of constrained optimization algorithms.
引用
收藏
页码:533 / 563
页数:31
相关论文
共 32 条
[1]  
Arrow K.J., 1958, STUDIES LINEAR NONLI
[2]   THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SZABO, BA ;
KATZ, IN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :515-545
[3]  
BALL AA, 1984, INT J NUMER METH ENG, V20, P197, DOI 10.1002/nme.1620200202
[4]   GEOMETRIC CONTINUITY OF PARAMETRIC CURVES - 3 EQUIVALENT CHARACTERIZATIONS [J].
BARSKY, BA ;
DEROSE, TD .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1989, 9 (06) :60-68
[5]  
BERCOVIER M, 1992, RAIRO-MATH MODEL NUM, V26, P211
[6]  
BERCOVIER M, 1993, IN PRESS EVALUATION
[7]  
CIALET PG, 1982, INTRO ANAL NUMERIQUE
[8]  
Farin G., 2014, CURVES SURFACES COMP
[9]  
Foley T. A., 1989, Mathematical Methods in Computer Aided Geometric Design, P261
[10]  
GOULT RJ, 1990, MATH SURFACES, V3