Total Domination Polynomial of A Graph

被引:0
作者
Chaluvaraju, B. [1 ]
Chaitra, V. [1 ]
机构
[1] Bangalore Univ, Dept Math, Cent Coll Campus, Bangalore 560001, Karnataka, India
来源
JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES | 2014年 / 6卷 / 02期
关键词
Graph; Domination number; Sign domination number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A total domination polynomial of a graph G of order n is the polynomial D-td(G, x) = (sic) d(td)(G, t)x(t), where d(td)(G, t) is the number of total dominating sets of G of cardinality t. In this paper, we present various properties of total domination polynomial of graph G. Also determine the total domination polynomial of some graph operations.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 50 条
  • [31] THE DISJUNCTIVE DOMINATION NUMBER OF A GRAPH
    Goddard, Wayne
    Henning, Michael A.
    McPillan, Charles A.
    QUAESTIONES MATHEMATICAE, 2014, 37 (04) : 547 - 561
  • [32] Domination in Discrete Topology Graph
    Jabor, Ali Ameer
    Omran, Ahmed Abd-Ali
    THIRD INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2019), 2019, 2183
  • [33] Total Domination Versus Domination in Cubic Graphs
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 261 - 276
  • [34] Domination in transformation graph G(-+-)
    Jebitha, M. K. Angel
    Joseph, J. Paulraj
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2011, 14 (03) : 279 - 303
  • [35] The Domination Number of a Random Graph
    Henning, Michael A.
    Yeo, Anders
    UTILITAS MATHEMATICA, 2014, 94 : 315 - 328
  • [36] Domination number in the Zariski topology-graph of modules
    Habibi, Shokoufeh
    Habibi, Zohreh
    Hezarjaribi, Masoomeh
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (03): : 329 - 340
  • [37] On the domination and signed domination numbers of zero-divisor graph
    Vatandoost, Ebrahim
    Ramezani, Fatemeh
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2016, 4 (02) : 148 - 156
  • [38] ON THE DOMINATION, STRONG AND WEAK DOMINATION IN TRANSFORMATION GRAPH Gxy-
    Aytac, Aysun
    Turaci, Tufan
    UTILITAS MATHEMATICA, 2019, 113 : 181 - 190
  • [39] DOMINATION NUMBERS ON THE COMPLEMENT OF THE BOOLEAN FUNCTION GRAPH OF A GRAPH
    Jankairaman, T. N.
    Muthammai, S.
    Bhanumathi, M.
    MATHEMATICA BOHEMICA, 2005, 130 (03): : 247 - 263
  • [40] MATHEMATICAL MODELLING AND SIMULATION OF FINGERPRINT ANALYSIS USING GRAPH ISOMORPHISM, DOMINATION, AND GRAPH PEBBLING
    Binwal, Jitendra
    Devi, Renu
    Singh, Bhupendra
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2023, 39 (02): : 259 - 284