A note on the Schur multiplier of groups of prime power order

被引:9
|
作者
Niroomand, Peyman [1 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
关键词
Schur multiplier; p-group;
D O I
10.1007/s11587-012-0134-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By a well-known result of Green (Proc R Soc A 237:574-581, 1956) and the formal definition of Ellis and Wiegold (Bull Austral Math Soc 60:191-196, 1999), there is an integer t, say corank(G), such that vertical bar M(G)vertical bar = p(1/2 n(n-1)-t). In Niroomand (J Algebra 322:4479-4482, 2009), the author showed for a non-abelian group G, corank(G) >= log(p) (vertical bar G vertical bar) - 2 and classified the structure of all non-abelian p-groups of corank log(p) (vertical bar G vertical bar) - 2. In the present paper, we are interesting to characterize the structure of all p-groups of corank log(p) (vertical bar G vertical bar) - 1.
引用
收藏
页码:341 / 346
页数:6
相关论文
共 50 条
  • [41] Capability and Schur multiplier of a pair of Lie algebras
    Johari, Farangis
    Parvizi, Mohsen
    Niroomand, Peyman
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 : 184 - 196
  • [42] On the dimension of the Schur multiplier of nilpotent lie algebras
    Rai, Pradeep K.
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 3982 - 3986
  • [43] On the Schur Multiplier and Covers of a Pair of Leibniz Algebras
    Biyogmam, Guy R.
    Safa, Hesam
    JOURNAL OF LIE THEORY, 2021, 31 (02) : 301 - 312
  • [44] A RESTRICTION ON THE SCHUR MULTIPLIER OF NILPOTENT LIE ALGEBRAS
    Niroomand, Peyman
    Russo, Francesco G.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 1 - 9
  • [45] On dimension of the Schur multiplier of nilpotent Lie algebras
    Niroomand, Peyman
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (01): : 57 - 64
  • [46] The maximum number of triangles in a graph and its relation to the size of the Schur multiplier of special p-groups
    Mavely, Tony Nixon
    Thomas, Viji Zachariah
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (07) : 2983 - 2994
  • [47] Schur multiplier and (residual) nilpotent Lie rings
    Heidari, Mahin
    Rismanchian, Mohammad Reza
    Araskhan, Mehdi
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5321 - 5329
  • [48] On the Schur Multiplier of n-Lie Algebras
    Darabi, Hamid
    Saeedi, Farshid
    JOURNAL OF LIE THEORY, 2017, 27 (01) : 271 - 281
  • [49] A remark on the Schur multiplier of nilpotent Lie algebras
    Riyahi, Zahra
    Salemkar, Ali Reza
    JOURNAL OF ALGEBRA, 2015, 438 : 1 - 6
  • [50] The Schur multiplier of an n-Lie superalgebra
    Safa, Hesam
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (07) : 2983 - 2996